早春植物作为陆地生态系统中一个特殊的生态层,能有效利用早春融化的雪水和少量雨水并迅速地完成生命活动周期,在陆地生态系统的物质循环、能量流动等方面发挥着重要的作用。随着全球氮沉降的加剧,含氮化合物的排放量随着人口增长和城市化水平的提高而不断增加,进而影响了早春植物的生长发育,但其固有的生长发育机制还不清楚。同时,又因早春植物所处特殊的生态位,营养循环的变化很可能对陆地生态系统的稳定与发展产生巨大的影响。为深入了解早春植物内在生长发育机制,本文综述了国内外有关早春植物不同生理指标对氮素添加影响的研究成果,详细分析了氮添加对早春植物的植物光合作用、地上/地下形态、地上/地下部生物量、地上/地下生态化学计量等指标的影响。在今后的研究中,要注重构建适应全球气候变化的标准框架体系,这对充分认识早春植物在全球环境变化中的功能性状反应与适应策略具有重要意义。 As a special ecological layer in the terrestrial ecosystem, early spring plants can utilize the melting snow and a small amount of rain water in early spring effectively and complete the life cycle rapidly. It played an important role in the material cycle and energy flow of the terrestrial ecosystem. With the intensification of global nitrogen deposition, the emissions of nitrogenous compounds continued to increase with the growth of population and the improvement of the level of urbanization, which affected the growth and development of plants in early spring, but its inherent growth and development mechanism was not clear. At the same time, because of the special niche of plants in early spring, the change of nutrient cycle was likely to have a great impact on the stability and development of terrestrial ecosystem. In order to understand the internal growth and development mechanism of early spring plants deeply, the effects of different physiological indexes of early spring plants on nitrogen addition were reviewed in this paper. The effects of nitrogen addition on plant photosynthesis, aboveground/underground morphology, aboveground/ underground biomass and aboveground/underground ecological stoichiometry of early spring plants were analyzed in detail. In the future research, we should pay attention to the construction of a standard framework for adapting to global climate change, which was of great significance for fully understanding the functional character responses and adaptation strategies of early spring plants in global environmental change.
氮添加,早春,植物生长,生物量,生态化学计量, Nitrogen Addition
Early Spring
Plant Growth
Biomass
Ecological Stoichiometry
摘要
Effect of Nitrogen Addition on Plant Growth in Early Spring: A Review
Hui Wang, Qinggui Wang*
College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin Heilongjiang
Received: Jul. 18th, 2021; accepted: Aug. 20th, 2021; published: Aug. 27th, 2021
ABSTRACT
As a special ecological layer in the terrestrial ecosystem, early spring plants can utilize the melting snow and a small amount of rain water in early spring effectively and complete the life cycle rapidly. It played an important role in the material cycle and energy flow of the terrestrial ecosystem. With the intensification of global nitrogen deposition, the emissions of nitrogenous compounds continued to increase with the growth of population and the improvement of the level of urbanization, which affected the growth and development of plants in early spring, but its inherent growth and development mechanism was not clear. At the same time, because of the special niche of plants in early spring, the change of nutrient cycle was likely to have a great impact on the stability and development of terrestrial ecosystem. In order to understand the internal growth and development mechanism of early spring plants deeply, the effects of different physiological indexes of early spring plants on nitrogen addition were reviewed in this paper. The effects of nitrogen addition on plant photosynthesis, aboveground/underground morphology, aboveground/underground biomass and aboveground/underground ecological stoichiometry of early spring plants were analyzed in detail. In the future research, we should pay attention to the construction of a standard framework for adapting to global climate change, which was of great significance for fully understanding the functional character responses and adaptation strategies of early spring plants in global environmental change.
Keywords:Nitrogen Addition, Early Spring, Plant Growth, Biomass, Ecological Stoichiometry
王 辉,王庆贵. 氮添加对早春植物生长的影响研究进展Effect of Nitrogen Addition on Plant Growth in Early Spring: A Review[J]. 世界生态学, 2021, 10(03): 404-414. https://doi.org/10.12677/IJE.2021.103045
参考文献References
Bai, Y.F., Wu, J.G., Christopher, M., et al. (2010) Tradeoffs and Thresholds in the Effects of Nitrogen Addition on Biodiversity and Ecosystem functioning: Evidence from Inner Mongolia Grasslands. Global Change Biology, 16, 889. https://doi.org/10.1111/j.1365-2486.2009.02142.x
Zhu, J.X., Wang, Q.F., He, N.P., et al. (2016) Imbalanced Atmospheric Nitrogen and Phosphorus Depositions in China: Implications for Nutrient Limitation. Journal of Geo-physical Research: Biogeosciences, 121, 1605-1616. https://doi.org/10.1002/2016JG003393
Rao, S., Chirkov, V., Dentener, F., et al. (2012) Environmental Modeling and Methods for Estimation of the Global Health Impacts of Air Pollution. Environmental Modeling & As-sessment, 17, 613-622. https://doi.org/10.1007/s10666-012-9317-3
Zhang, W., Wen, X., Qi, L., et al. (2020) Changes of Nitrogen Deposition in China from 1980 to 2018. Environment International, 144, Article ID: 106022. https://doi.org/10.1016/j.envint.2020.106022
IPCC (2021) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York.
Carly, J.S., Nancy, B., et al. (2004) Impact of Nitrogen Deposition on the Species Richness of Grasslands. Science, 303, 1876-1879. https://doi.org/10.1126/science.1094678
BouwmanA, F., Vuuren, D.P.V., Derwent, R.G., et al. (2002) A Global Analysis of Acidification and Eutrophication of Terrestrial Ecosystems. Water Air & Soil Pollution, 141, 349-382. https://doi.org/10.1023/A:1021398008726
Zhou, Z.H., Wang, C.K. and Luo, Y.Q. (2020) Meta-Analysis of the Impacts of Global Change Factors on Soil Microbial Diversity and Functionality. Nature Communications, 11, Article No. 3072. https://doi.org/10.1038/s41467-020-16881-7
De Schrijver, A., De Frenne, P., Ampoorter, E., et al. (2011) Cumulative Nitrogen Input Drives Species Loss in Terrestrial Ecosystems. Global Ecology and Biogeography, 20, 803-816. https://doi.org/10.1111/j.1466-8238.2011.00652.x
Fang, Y., Yoh, M., Koba, K., et al. (2011) Ni-trogen Deposition and Forest Nitrogen Cycling along an Urban-Rural Transect in Southern China. Global Change Bi-ology, 17, 872-885. https://doi.org/10.1111/j.1365-2486.2010.02283.x
Ceulemans, T., Stevens, C., Duchateau, L., et al. (2014) Soil Phosphorus Constrains Biodiversity across European Grasslands. Global Change Biology, 20, 3814-3822. https://doi.org/10.1111/gcb.12650
Fraser, L., Pither, J., Jentsch, A., et al. (2016) Worldwide Evidence of a Unimodal Relationship between Productivity and Plant Species Richness. Science, 351, 457.
王爱霞, 马婧婧, 龚会蝶, 等. 北疆一年生早春短命植物物种丰富度分布格局及其影响因素[J]. 生物多样性, 2021, 29(6): 735-745.
李林森, 程淑兰, 方华军, 等. 氮素富集对青藏高原高寒草甸土壤有机碳迁移和累积过程的影响[J]. 土壤学报, 2015, 52(1): 183-193.
Jones, A.G. and Power, S.A. (2012) Field-Scale Evaluation of Effects of Nitrogen Deposition on the Functioning of Heathland Ecosystems. Journal of Ecology, 100, 331-342. https://doi.org/10.1111/j.1365-2745.2011.01911.x
Liu, P., Huang, J., Sun, O.J., et al. (2010) Litter Decomposition and Nutrient Release as Affected by Soil Nitrogen Availability and Litter Quality in a Semiarid Grassland Ecosystem. Oecologia, 162, 771-780. https://doi.org/10.1007/s00442-009-1506-7
Yoko, N. and Gaku, K. (1995) Relationship between Flower Number and Reproductive Success of a Spring Ephemeral Herb, Anemone flaccida (Ranunculaceae). Plant Species Bi-ology, 10, 111-118. https://doi.org/10.1111/j.1442-1984.1995.tb00129.x
Line, L. (2001) How Phenology Influences Physiology in Deciduous Forest Spring Ephemerals. Physiologia Plantarum, 113, 151-157. https://doi.org/10.1034/j.1399-3054.2001.1130201.x
Rothstein, D.E. (2000) Spring Ephemeral Herbs and Nitrogen Cycling in a Northern Hardwood Forest: An Experimental Test of the Vernal Dam Hypothesis. Oecologia, 124, 446-453. https://doi.org/10.1007/PL00008870
曲鹏. 增氮减水对早春草本植物碳、氮分配的影响[D]: [硕士学位论文]. 哈尔滨: 黑龙江大学, 2018.
Gilliam, F.S. (2007) The Ecological Significance of the Herbaceous Layer in Temperate Forest Ecosystems. BioScience, 57, 845-858. https://doi.org/10.1641/B571007
Fan, L.L., Li, Y., Tang, L.S., et al. (2013) Combined Effects of Snow Depth and Nitrogen Addition on Ephemeral Growth at the Southern Edge of the Gurbantunggut Desert, China. Journal of Arid Land, 5, 500-510. https://doi.org/10.1007/s40333-013-0185-8
Zhou, X.B., Bowker, M.A., et al. (2018) Chronic Nitrogen Ad-dition Induces a Cascade of Plant Community Responses with Both Seasonal and Progressive Dynamics. Science of the Total Environment, 626, 99-108. https://doi.org/10.1016/j.scitotenv.2018.01.025
Lin, J.X., Wang, Y.N., Sun, S.N., et al. (2017) Effects of Arbuscular Mycorrhizal Fungi on the Growth, Photosynthesis and Photosynthetic Pigments of Leymus chinensis Seed-lings under Salt-Alkali Stress and Nitrogen Deposition. Science of the Total Environment, 576, 234-241. https://doi.org/10.1016/j.scitotenv.2016.10.091
Harpole, W.S., NgaiJ, T., Cleland, E.E., et al. (2011) Nutrient Co-Limitation of Primary Producer Communities. Ecology Letters, 14, 852-862. https://doi.org/10.1111/j.1461-0248.2011.01651.x
Maslova, T.G., Mamushina, N.S., Zubkova, E.K., et al. (2003) Specific Features of Plastid Pigment Apparatus and Photosynthesis in the Leaves of Ephemeroid and Summer Plants as Related to Photoinhibition. Russian Journal of Plant Physiology, 50, 52-56. https://doi.org/10.1023/A:1021984301214
Zhang, T., Yang, S.B., Guo, R., et al. (2016) Warming and Ni-trogen Addition Alter Photosynthetic Pigments, Sugars and Nutrients in a Temperate Meadow Ecosystem. PloS ONE, 11, e0155375. https://doi.org/10.1371/journal.pone.0155375
韩炳宏, 尚振艳, 袁晓波, 等. 氮素添加对黄土高原典型草原长芒草光合特性的影响[J]. 草业科学, 2016, 33(6): 1070-1076.
张瑞朋, 傅连舜, 杨德忠, 等. 氮素对不同来源大豆品种碳代谢相关指标的影响[J]. 河南农业科学, 2010(2): 28-31.
周晓兵, 张元明, 王莎莎, 等. 3种荒漠植物幼苗生长和光合生理对氮增加的响应[J]. 中国沙漠, 2011, 31(1): 82-89.
赵静, 刘羽霞, 许嘉巍, 等. 模拟氮沉降对长白山苔原灌草混合群落中植物光合特性的影响[J]. 植物科学学报, 2020, 38(5): 678-686.
Zhao, C. and Liu, Q. (2009) Growth and Photosynthetic Responses of Two Coniferous Species to Ex-perimental Warming and Nitrogen Fertilization. Canadian Journal of Forest Research, 39, 1-11. https://doi.org/10.1139/X08-152
Charles, R., Warren, E.D., et al. (2003) Photosynthesis-Rubisco Relation-ships in Foliage of Pinus sylvestris in Response to Nitrogen Supply and the Proposed Role of Rubisco and Amino Acids as Nitrogen Stores. Trees, 17, 359-366. https://doi.org/10.1007/s00468-003-0246-2
Huang, L., Lu, Y.Y., Gao, X., et al. (2013) Ammonium-Induced Oxidative Stress on Plant Growth and Antioxidative Response of Duckweed (Lemna minor L.). Ecological Engineering, 58, 355-362. https://doi.org/10.1016/j.ecoleng.2013.06.031
冯憬, 张相锋, 董世魁, 等. 增温与氮沉降对高寒植物净光合速率的影响[J]. 草业科学, 2018, 35(4): 781-790.
何念鹏, 刘聪聪, 张佳慧, 等. 植物性状研究的机遇与挑战: 从器官到群落[J]. 生态学报, 2018, 38(19): 6787-6796.
Cyrille, V., Marie, L.N., Denis, V., et al. (2007) Let the Concept of Trait be Functional! Oikos, 116, 882-892. https://doi.org/10.1111/j.0030-1299.2007.15559.x
Bernd, W. (1992) Nitrogen in Terrestrial Ecosystems: Questions of Productivity, Vegetational Changes and Ecosystem Stability. The Holocene, 154, 508. https://doi.org/10.1097/00010694-199212000-00010
沈豪, 董世魁, 李帅, 等. 氮添加对高寒草甸植物功能群数量特征和光合作用的影响[J]. 生态学杂志, 2019, 38(5): 1276-1284.
李雪芬. 氮添加对紫花苜蓿生长特性及光合生理特性的影响[J]. 北方园艺, 2015(2): 158-164.
Wang, H.Y., Wang, Z.W., Ding, R., et al. (2018) The Impacts of Nitrogen Deposition on Community N:P Stoichiometry Do Not Depend on Phosphorus Availability in a Temperate Meadow Steppe. Environmental Pollution, 242, 82-89. https://doi.org/10.1016/j.envpol.2018.06.088
Wan, S.Q., Xia, J.Y., Liu, W.X., et al. (2009) Photosynthetic Overcompensation under Nocturnal Warming Enhances Grassland Carbon Sequestration. Ecology, 90, 2700-2710. https://doi.org/10.1890/08-2026.1
李盼盼. 施氮对白羊草群落特征及土壤侵蚀过程的影响[D]: [硕士学位论文]. 咸阳: 西北农林科技大学, 2017.
曲秋玲. 施氮对白羊草地上和根系形态及生理特征的影响[D]: [硕士学位论文]. 咸阳: 西北农林科技大学, 2012.
Tian, D., Li, P., Fang, W.J., et al. (2017) Growth Responses of Trees and Understory Plants to Nitrogen Fertilization in a Subtropical Forest in China. Biogeosciences, 14, 3461-3469. https://doi.org/10.5194/bg-14-3461-2017
Garnett, T., Conn, V. and Kaiser, B.N. (2010) Root Based Approaches to Improving Nitrogen Use Efficiency in Plants. Plant Cell & Environment, 32, 1272-1283. https://doi.org/10.1111/j.1365-3040.2009.02011.x
Mo, Q.F., Zou, B., Li, Y.W., et al. (2015) Response of Plant Nutrient Stoichiometry to Fertilization Varied with Plant Tissues in a Tropical Forest. Scientific Reports, 5, Article ID: 14605. https://doi.org/10.1038/srep14605
Eghball, B. and Maranville, J.W. (1993) Root Development and Nitrogen Influx of Corn Genotypes Grown under Combined Drought and Nitrogen Stresses. Agronomy Journal, 85, 147-152. https://doi.org/10.2134/agronj1993.00021962008500010027x
Ma, S.Y., Kris, V., Ruben, P., et al. (2018) Plant and Soil Microbe Responses to Light, Warming and Nitrogen Addition in a Temperate Forest. Functional Ecology, 32, 1293-1303. https://doi.org/10.1111/1365-2435.13061
Chen, Y.F., Zhang, L.W., Shi, X., et al. (2019) Life History Responses of Spring and Autumn-Germinated Ephemeral Plants to Increased Nitrogen and Precipitation in the Gurbantunggut Desert. The Science of the Total Environment, 659, 756-763. https://doi.org/10.1016/j.scitotenv.2018.12.368
张岚, 张玲卫, 刘会良. 氮添加对荒漠草原一年生短命植物根系形态特征的影响及其生物量特征关系[J]. 草业科学, 2020, 37(10): 2003-2011.
Wang, G.L., Fahey, T.J., Xue, S., et al. (2013) Root Morphology and Architecture Respond to N Addition in Pinus tabuliformis, West China. Oecologia, 171, 583-590. https://doi.org/10.1007/s00442-012-2441-6
闫建成, 梁存柱, 付晓玥, 等. 草原与荒漠一年生植物性状对降水变化的响应[J]. 草业学报, 2013, 22(1): 68-76.
Cao, Y., Wang, T., Xiao, Y., et al. (2014) The Interspecific Competition between Humulus scandens and Alternanthera philoxeroides. Journal of Plant Interactions, 9, 194-199. https://doi.org/10.1080/17429145.2013.808767
Wang, A.Y., Wang, M., Yang, D., et al. (2016) Responses of Hydraulics at the Whole-Plant Level to Simulated Nitrogen Deposition of Different Levels in Fraxinus mandshurica. Tree Physiology, 36, 1045-1055. https://doi.org/10.1093/treephys/tpw048
景明慧, 贾晓彤, 张运龙, 等. 长期氮添加对内蒙古典型草原植物地上, 地下生物量及根冠比的影响[J]. 生态学杂志, 2020, 39(10): 3185-3193.
毛晋花, 邢亚娟, 闫国永, 等. 陆生植物生物量分配对模拟氮沉降响应的Meta分析[J]. 生态学报, 2018, 38(9): 3183-3194.
Li, F.R., Tom, L.D., et al. (2016) Responses of Tree and Insect Herbivores to Elevated Nitrogen Inputs: A Meta-Analysis. Acta Oecologica, 77, 160-167. https://doi.org/10.1016/j.actao.2016.10.008
祁瑜, 黄永梅, 王艳, 等. 施氮对几种草地植物生物量及其分配的影响[J]. 生态学报, 2011, 31(18): 5121-5129.
Zhang, L.,Wu, D.X., Shi, H.Q., et al. (2018) Effects of Elevated CO2 and N Addition on Growth and N2 Fixation of a Legume Subshrub (Caraganamicrophylla Lam.) in Temperate Grassland in China. PLoS ONE, 6, e26842. https://doi.org/10.1371/journal.pone.0026842
Helmisaari, H.S., Saarsalmi, A. and Kukkola, M. (2009) Effects of Wood Ash and Nitrogen Fertilization on Fine Root Biomass and Soil and Foliage Nutrients in a Norway spruce stand in Finland. Plant and Soil, 314, 121-132. https://doi.org/10.1007/s11104-008-9711-4
于立忠, 丁国泉, 朱教君, 等. 施肥对日本落叶松人工林细根生物量的影响[J]. 应用生态学报, 2007(4): 713-720.
Burton, A.J., Pregitzer, K.S. and Hendrick, R.L. (2000) Relationships between Fine Root Dynamics and Nitrogen Availability in Michigan Northern Hardwood Forests. Oecologia, 125, 389-399. https://doi.org/10.1007/s004420000455
Steele, S.J., Gower, S.T., Vogel, J.G., et al. (1997) Root Mass, Net Primary Production and Turnover in Aspen, Jack Pine and Black Spruce Forests in Saskatchewan and Manitoba, Canada. Tree Physiology, 8-9, 577-587. https://doi.org/10.1093/treephys/17.8-9.577
Chen, Y., Zhang, L., Xiang, S., et al. (2019) Life History Re-sponses of Two Ephemeral Plant Species to Increased Precipitation and Nitrogen in the Gurbantunggut Desert. PeerJ, 7, e6158. https://doi.org/10.7717/peerj.6158
Majdi, H. and Andersson, P. (2005) Fine Root Production and Turnover in a Norway Spruce Stand in Northern Sweden: Effects of Nitrogen and Water Manipulation. Ecosystems, 8, 191-199. https://doi.org/10.1007/s10021-004-0246-0
郭旋, 胡中民, 李胜功, 等. 氮磷添加对内蒙古温带典型草原地下生物量的影响[J]. 生态学杂志, 2021, 40(4): 929-939.
高景, 王金牛, 徐波, 等. 不同雪被厚度下典型高山草地早春植物叶片性状、株高及生物量分配的研究[J]. 植物生态学报, 2016, 40(8): 775-787.
Hugh, A.L., Henry, N.R., et al. (2006) Interactive Effects of Fire, Elevated Carbon Dioxide, Nitrogen Deposition, and precipitation on a California Annual Grassland. Ecosystems, 9, 1066-1075. https://doi.org/10.1007/s10021-005-0077-7
Zeng, D.H. and Chen, G.S. (2005) Ecological Stoichiometry: A Science to Explore the Complexity of Living Systems. Acta Phytoecologica Sinica, 29, 1007-1019. https://doi.org/10.17521/cjpe.2005.0120
Niklas, K.J., Owens, T., Reich, P.B., et al. (2010) Nitro-gen/Phosphorus Leaf Stoichiometry and the Scaling of Plant Growth. Ecology Letters, 8, 636-642. https://doi.org/10.1111/j.1461-0248.2005.00759.x
Novotny, A.M., Schade, J.D., Hobbie, S.E., et al. (2007) Stoichiometric Response of Nitrogen-Fixing and Non-Fixing Dicots to Manipulations of CO2, Nitrogen, and Diversity. Oecologia, 151, 687-696. https://doi.org/10.1007/s00442-006-0599-5
陶冶, 张元明. 古尔班通古特沙漠4种草本植物叶片与土壤的化学计量特征[J]. 应用生态学报, 2015, 26(3): 659-665.
安卓, 牛得草, 文海燕, 等. 氮素添加对黄土高原典型草原长芒草氮磷重吸收率及C:N:P化学计量特征的影响[J]. 植物生态学报, 2011, 35(8): 801-807.
崔晓庆. 降雨、温度和氮沉降增加对新疆温带荒漠生态系统氮素去向和植物化学计量特征的影响[D]: [博士学位论文]. 北京: 中国农业大学, 2018.
Li, L., Liu, B., Gao, X.P., et al. (2019) Nitrogen and Phosphorus Addition Differen-tially Affect Plant Ecological Stoichiometry in Desert Grassland. Scientific Reports, 9, Article ID: 18673. https://doi.org/10.1038/s41598-019-55275-8
Zhan, S.X., Wang, Y., Zhu, Z.C., et al. (2017) Nitrogen En-richment Alters Plant N: P Stoichiometry and Intensifies Phosphorus Limitation in a Steppe ecosystem. Environmental and Experimental Botany, 134, 21-32. https://doi.org/10.1016/j.envexpbot.2016.10.014
Gareth, K., Phoenix, R.E., et al. (2004) Simulated Pollutant Nitrogen Deposition Increases P Demand and Enhances Root-Surface Phosphatase Activities of Three Plant Functional Types in a Calcareous Grassland. New Phytologist, 161, 279-290. https://doi.org/10.1046/j.1469-8137.2003.00910.x
岳泽伟, 李向义, 李磊, 等. 氮添加对昆仑山高山草地土壤、微生物和植物生态化学计量特征的影响[J]. 生态科学, 2020, 39(3):1-8.
Mei, L.L., Yang, X., Cao, H.B., et al. (2019) Arbuscular Mycorrhizal Fungi Alter Plant and Soil C:N:P Stoichiometries under Warming and Nitrogen Input in a Semiarid Meadow of China. International Journal of Environmental Research and Public Health, 16, 397. https://doi.org/10.3390/ijerph16030397
高宗宝, 王洪义, 吕晓涛, 等. 氮磷添加对呼伦贝尔草甸草原4种优势植物根系和叶片C:N:P化学计量特征的影响[J]. 生态学杂志, 2017(1): 82-90.
杨振安. 青藏高原高寒草甸植被土壤系统对放牧和氮添加的响应研究[D]: [博士学位论文]. 咸阳: 西北农林科技大学, 2017.