四川盆地下志留统龙马溪组海相页岩气工作已经进入大规模效益开发阶段,水平井目标靶体段仅为龙马溪底部连续I类优质页岩段。开展连续I类优质页岩段精细预测,引导水平井实钻轨迹准确入靶,确保水平井水平段在箱体中钻进,提高水平井的钻遇率,是页岩气勘探–开发一体化的迫切需要。本论文以四川盆地Z地区为例,将基于全道集叠前同时反演应用于生产实践,预测页岩气水平井目标靶体储层厚度,指导水平井轨迹设计。结果表明:基于全CRP道集叠前同时反演技术充分利用了原始道集中完整的AVO信息,解决了目前页岩气薄层甜点识别的难题,提高了页岩气水平井钻探成功率,降低了勘探开发成本。 The marine shale gas in the Lower Silurian Longmaxi Formation in the Sichuan Basin has entered a stage of large-scale profitable development. However, at present, the target section of horizontal shale gas wells is only the continuous type I high-quality shale section at the bottom of Longmaxi. The precise prediction of continuous type I high-quality shale sections is carried out to guide the actual drilling trajectory of horizontal wells to accurately enter the target, so as to ensure that the horizontal section of the horizontal well is drilled in the box, so that the drilling encounter rate of the horizontal well can be improved. This is the urgent need for the integration of rock and gas exploration and development. This thesis takes the Z area of the Sichuan Basin as an example, and applies the pre-stack inversion based on the complete collection data to production practice to finely predict the target reservoir thickness of a shale gas horizontal well, thereby guiding the horizontal well trajectory design. Our research results show that the pre-stack inversion technology based on full CRP gathers makes full use of the complete AVO information of the original gathers, solves the current problem of identifying sweet spots in shale gas thin layers, and improves the success of shale gas horizontal well drilling, and reduce the cost of shale gas exploration and development.
四川盆地下志留统龙马溪组海相页岩气工作已经进入大规模效益开发阶段,水平井目标靶体段仅为龙马溪底部连续I类优质页岩段。开展连续I类优质页岩段精细预测,引导水平井实钻轨迹准确入靶,确保水平井水平段在箱体中钻进,提高水平井的钻遇率,是页岩气勘探–开发一体化的迫切需要。本论文以四川盆地Z地区为例,将基于全道集叠前同时反演应用于生产实践,预测页岩气水平井目标靶体储层厚度,指导水平井轨迹设计。结果表明:基于全CRP道集叠前同时反演技术充分利用了原始道集中完整的AVO信息,解决了目前页岩气薄层甜点识别的难题,提高了页岩气水平井钻探成功率,降低了勘探开发成本。
四川盆地,页岩气I类优质页岩,水平井目标靶体,全道集叠前同时反演
Lijuan Huang, Xiao Yang, Ruyue Zhang, Xiaolan Wang, Ruining Li, Shiyu Zhou, Huaiming Zhang
BGP Southwest Geophysical Institute of CNPC, Zhuozhou Hebei
Received: Jun. 24th, 2021; accepted: Jul. 19th, 2021; published: Jul. 26th, 2021
The marine shale gas in the Lower Silurian Longmaxi Formation in the Sichuan Basin has entered a stage of large-scale profitable development. However, at present, the target section of horizontal shale gas wells is only the continuous type I high-quality shale section at the bottom of Longmaxi. The precise prediction of continuous type I high-quality shale sections is carried out to guide the actual drilling trajectory of horizontal wells to accurately enter the target, so as to ensure that the horizontal section of the horizontal well is drilled in the box, so that the drilling encounter rate of the horizontal well can be improved. This is the urgent need for the integration of rock and gas exploration and development. This thesis takes the Z area of the Sichuan Basin as an example, and applies the pre-stack inversion based on the complete collection data to production practice to finely predict the target reservoir thickness of a shale gas horizontal well, thereby guiding the horizontal well trajectory design. Our research results show that the pre-stack inversion technology based on full CRP gathers makes full use of the complete AVO information of the original gathers, solves the current problem of identifying sweet spots in shale gas thin layers, and improves the success of shale gas horizontal well drilling, and reduce the cost of shale gas exploration and development.
Keywords:Sichuan Basin, Type I High-Quality Shale, Horizontal Well Target Body, Pre-Stack Inversion of the Complete Set of Channels
Copyright © 2021 by author(s) and beplay安卓登录
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/
中国页岩气从最初的评层选区到如今的大规模效益开发,已经逐步走上工业化和商业化之路;四川盆地下志留统龙马溪组海相页岩是目前中国页岩气发展的主要产层 [
要解决储层钻遇率低的问题,首先要能够通过地震方法精准的识别出我们页岩气水平井的靶体储层。本文采用一种基于全叠加道集叠前同时反演的方法来解决目前页岩气水平井靶体厚度预测的问题 [
目前页岩气储层预测中,使用比较多的方法是常规叠前反演(是基于部分叠加数据体进行的) [
基于全CRP道集的叠前同时反演是目前页岩气水平井目标靶体厚度预测的关键技术。全叠加CRP道集包含了较完整的AVO信息,基于全叠加道集的叠前同时反演能充分利用叠前道集中的AVO信息,增强页岩气水平井目标靶体预测的可靠性 [
为提高叠前同时反演的抗噪能力,确保反演精度,须对原始道集进行优化处理。基于全道集的叠前反演主要经过数据导入、道集修饰处理、层位标定、子波提取、模型构建、反演参数选取(反演参数QC)、反演、质控共8个步骤完成 [
通过对全道集的一系列优化处理,经优化处理后的道集质量得到明显改善,获得了高品质的叠前道集,可直接进行叠前同时反演 [
图1. 切除前后对比图
图2. 滤波前后对比图
图3. 生成超级道集
图4. 非地表一致性静校正前后对比图
四川盆地Z地区龙马溪组处于深水外陆棚环境,沉积了大量富有有机质的黑色页岩(图5)。龙马溪组岩性主要为灰黑色粉砂质页岩、炭质页岩、硅质页岩夹泥质粉砂岩,龙马溪组地层自上而下颜色逐渐加深、砂质逐渐减少、有机质含量明显增高 [
图5. W井岩性柱状图
图6. 龙马溪组地层划分
选取长宁、威远及周缘地区测井储层来探讨4个小层及五峰组储层在纵横向分布特征。龙一14小层储层组合为III类夹II类薄层,靠近龙一11小层底部以II类储层为主,III类储层纵向连续厚度较大,横向连续性较好,威远地区局部夹I类薄;龙一13小层储层组合为II类夹薄I类储层,II类纵向厚度大II类在横向上连续性好;龙一12小层储层组合为I类夹II类薄层,I类储层纵向连续厚度较大,横向连续性较好;龙一11小层储层组合为I类夹II类薄层,I类储层纵向连续厚度较大,横向连续性较好。五峰组储层品质具有区域性差异,长宁地区以I类储层为主,纵向连续厚度较大,横向连续性好,靠近底部灰岩(临湘组)其储层以II类储层为主;靠近古隆起的威远地区以III类为主,纵横向连续性大,夹薄II类;威远以东地区储层品质变好,荷包场地区以II类夹薄III类为主,大足地区以I类与II类互层分布。
四川盆地Z地区优质页岩段在纵向上主要分布在龙一1亚段,储层与围岩在纵波速度、密度、纵横波速度比等方面都有明显差异,储层段较围岩具有明显的低纵波速度、低纵横波速度比、低密度、高自然伽马、高TOC、高总含气量与高孔隙度特征。结合测井资料,从图7可以看出,水平井靶体储层(连续I类储层)在密度、纵横波速度比、横波速度、纵波速度上有较大的重叠区域,识别出靶体储层的难度较大。图8可以看出,靶体储层与非靶体储层在脆性指数、孔隙度、总含气量上有较大的重叠区域,但是总有机碳能够很好的区分出优质页岩(toc (总有机碳)大于等于3.5)。
经过对区域内井资料进行分析,总有机碳与密度的相关性相对较好(图9),相关系数达到0.89,可以用密度进行TOC (总有机碳)定量预测 [
图7. 敏感参数分析
完成基于全道集叠前反演完成后,得到高精度的弹性参数数据体(纵波速度、横波速度、密度)。根据TOC与密度之间建立的关系式,将基于全道集叠前反演得到的密度数据体转换为TOC数据体。过WELLA总有机碳含量预测剖面(图10)上井旁道反演结果与测井曲线吻合度较高,特征基本一致。龙马溪组龙一1亚段I类连续储层的总有机碳含量较高(大于3.5),横向变化趋势合理。
图8. 敏感参数分析
图9. 靶体段TOC与密度交汇分析
图10. WELLA总有机碳预测剖面
根据toc (总有机碳含量)预测数据体,提取出总有机碳大于等于3.5的采样点(即为测井响应分析得到的水平井目标靶体,连续I类储层段),生成岩性体用于指导水平井工程设计,保障水平井精准入靶(图11)。计算该岩性体的时间累计厚度,乘以对应点速度,编制出龙马溪组靶体储层的厚度平面分布图(图12)。
图11. 过wellB井目标靶体段岩性剖面
实钻结果表明,利用我们的预测结果指导的水平钻井,靶体层钻遇率高。预测的结果为水平井的精准入靶提供了重要依据和保障 [
图12. 龙马溪组一类优质页岩厚度分布图
1) 基于全道集的叠前同时反演技术充分利用叠前道集中的AVO信息,能刻画出水平井目标靶体的储层内部特征变化,提高弹性参数的反演精度。
2) 水平井实钻结果表明,结合全道集叠前密度反演获得TOC数据体,预测出五峰组水平井目标靶体储层的空间及平面展布,预测精度高,为该区页岩气开发设计提供可靠依据。
黄丽鹃,杨 晓,张入月,王小兰,李睿宁,周诗雨,张怀明. 基于全道集叠前反演的页岩气水平井目标靶体储层厚度预测Pre-Stack Inversion of Target Reservoir Thickness Prediction for Shale Gas Horizontal Wells Based on Full Gathers[J]. 地球科学前沿, 2021, 11(07): 995-1004. https://doi.org/10.12677/AG.2021.117095
https://doi.org/10.1177/0144598716679961