甲状腺激素与急性缺血性脑卒中患者的预后密切相关,甲状腺激素作为新的预测因子,可以为急性缺血性脑卒中患者的预后提供监测指标,故本文围绕急性缺血性脑卒中患者体内甲状腺激素的变化情况、以及FT3、FT4、TT3、FT3/FT4、TSH对急性缺血性脑卒中患者预后的影响和补充甲状腺激素对预后的影响的研究进展加以综述,旨在为相关研究提供理论基础。 Thyroid hormone is closely related to the prognosis of patients with acute ischemic stroke. As a new predictor, thyroid hormone can provide a monitoring index for the prognosis of patients with acute ischemic stroke. Therefore, this paper reviews the changes of thyroid hormone in patients with acute ischemic stroke, the effects of FT3, FT4, TT3, FT3/FT4 and TSH on the prognosis of patients with acute ischemic stroke, and the effects of thyroid hormone supplementation on the prognosis, aiming to provide a theoretical basis for related studies.
Thyroid hormone is closely related to the prognosis of patients with acute ischemic stroke. As a new predictor, thyroid hormone can provide a monitoring index for the prognosis of patients with acute ischemic stroke. Therefore, this paper reviews the changes of thyroid hormone in patients with acute ischemic stroke, the effects of FT3, FT4, TT3, FT3/FT4 and TSH on the prognosis of patients with acute ischemic stroke, and the effects of thyroid hormone supplementation on the prognosis, aiming to provide a theoretical basis for related studies.
何小艳,薛艺东. 甲状腺激素与急性缺血性脑卒中预后相关性的研究进展Research Progress on the Correlation between Thyroid Hormone and Prognosis of Acute Ischemic Stroke[J]. 临床医学进展, 2021, 11(07): 3158-3167. https://doi.org/10.12677/ACM.2021.117458
参考文献References
商娜, 刘慧珍, 李芳, 刘芦姗, 王丰容, 李俊玉, 王雅慧, 李培兰, 郭树彬. 甲状腺激素水平、TOAST分型与急诊急性缺血性脑卒中患者短期预后的关系研究[J]. 实用心脑肺血管病杂志, 2020, 28(12): 40-45+51.
刘丽娜, 林财威, 王香华, 刘伟, 张飞, 王旭东. 危重症患者血清甲状腺素水平对预后的影响[J]. 中国临床医生, 2014, 42(12): 45-46.
Lamba, N., Liu, C., Zaidi, H., Broekman, M.L.D., Simjian, T., Shi, C., Doucette, J., Ren, S., Smith, T.R., Mekary, R.A. and Bunevicius, A. (2018) A Prognostic Role for Low Tri-Iodothyronine Syndrome in Acute Stroke Patients: A Systematic Review and Meta-Analysis. Clinical Neurology and Neurosurgery, 169, 55-63. https://doi.org/10.1016/j.clineuro.2018.03.025
袁二燕, 苏艳超, 王志强. 正常甲状腺病态综合征与危重症[J]. 中国实用医药, 2015, 10(5): 77-78.
山媛, 蒋锋, 崔小丽. 血清游离甲状腺素水平与甲状腺激素水平正常的脑梗死患者颈动脉粥样硬化斑块的关系研究[J]. 实用心脑肺血管病杂志, 2018, 26(11): 37-41.
徐明然, 祝滨, 胡颖, 陈蕾, 沙霞, 王璐, 卫清琪, 姜欣, 钟琪, 孙晓江. 低三碘甲状腺原氨酸综合征与急性脑卒中的相关性[J]. 中国老年学杂志, 2016, 36(12): 2906-2907.
梁雁, 吴泳, 伍秀宇, 陈钢涛, 梁汉周, 黄丹丹. 缺血性脑卒中患者血清FT3、FT4、TSH水平变化的临床意义[J]. 中国当代医药, 2016, 23(1): 64-66+70.
李峥嵘, 刘芸芸, 季永欣. 动态检测甲状腺激素水平在急性脑卒中的应用价值[J]. 现代实用医学, 2019, 31(3): 334-336.
Jiang, X., Xing, H., Wu, J., Du, R., Liu, H., Chen, J., Wang, J., Wang, C. and Wu, Y. (2017) Prognostic Value of Thyroid Hormones in Acute Ischemic Stroke—A Meta Analysis. Scientific Reports, 7, Article No. 16256. https://doi.org/10.1038/s41598-017-16564-2
Suda, S., Shimoyama, T., Nagai, K., Arakawa, M., Aoki, J., Kanamaru, T., Suzuki, K., Sakamoto, Y., Takeshi, Y., Matsumoto, N., Nishiyama, Y., Nito, C., Mishina, M. and Kimura, K. (2018) Low Free Triiodothyronine Predicts 3-Month Poor Outcome after Acute Stroke. Journal of Stroke & Cerebrovascular Diseases, 27, 2804-2809. https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.06.009
Suda, S., Muraga, K., Kanamaru, T., Okubo, S., Abe, A., Aoki, J., Suzuki, K., Sakamoto, Y., Shimoyama, T., Nito, C. and Kimura, K. (2016) Low Free Triiodothyronine Predicts Poor Functional Outcome after Acute Ischemic Stroke. Journal of the Neurological Sciences, 368, 89-93. https://doi.org/10.1016/j.jns.2016.06.063
Dhital, R., Poudel, D.R., Tachamo, N., Gyawali, B., Basnet, S., Shrestha, P. and Karmacharya, P. (2017) Ischemic Stroke and Impact of Thyroid Profile at Presentation: A Systematic Review and Meta-analysis of Observational Studies. Journal of Stroke & Cerebrovascular Diseases, 26, 2926-2934. https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.07.015
Chaker, L., Baumgartner, C., den Elzen, W.P., Collet, T.H., Ikram, M.A., Blum, M.R., Dehghan, A., Drechsler, C., Luben, R.N., Portegies, M.L., Iervasi, G., Medici, M., Stott, D.J., Dullaart, R.P., Ford, I., Bremner, A., Newman, A.B., Wanner, C., Sgarbi, J.A., Dörr, M., Longstreth Jr., W.T., Psaty, B.M., Ferrucci, L., Maciel, R.M., Westendorp, R.G., Jukema, J.W., Ceresini, G., Imaizumi, M., Hofman, A., Bakker, S.J., Franklyn, J.A., Khaw, K.T., Bauer, D.C., Walsh, J.P., Razvi, S., Gussekloo, J., Völzke, H., Franco, O.H., Cappola, A.R., Rodondi, N. and Peeters, R.P. (2016) Thyroid Studies Collaboration. Thyroid Function within the Reference Range and the Risk of Stroke: An Individual Participant Data Analysis. Journal of Clinical Endocrinology & Metabolism, 101, 4270-4282. https://doi.org/10.1210/jc.2016-2255
Li, L.Q., Xu, X.Y., Li, W.Y., Hu, X.Y. and Lv, W. (2019) The Prognostic Value of Total T3 after Acute Cerebral Infarction Is Age-Dependent: A Retrospective Study on 768 Patients. BMC Neurology, 19, Article No. 54. https://doi.org/10.1186/s12883-019-1264-z
Feng, X., Zhou, X., Yu, F., Liu, Z., Wang, J., Li, Z., Zhan, Q., Yang, Q., Liu, Y. and Xia, J. (2019) Low-Normal Free Triiodothyronine and High Leukocyte Levels in Relation to Stroke Severity and Poor Outcome in Acute Ischemic Stroke with Intracranial Atherosclerotic Stenosis. International Journal of Neuroscience, 129, 635-641. https://doi.org/10.1080/00207454.2018.1503179
Sadana, P., Coughlin, L., Burke, J., Woods, R. and Mdzinarishvili, A. (2015) Anti-Edema Action Ofthyroid Hormone in MCAO Model of Ischemic Brain Stroke: Possible Association with AQP4 Modulation. Journal of the Neurological Sciences, 354, 37-45. https://doi.org/10.1016/j.jns.2015.04.042
Badaut, J., Lasbennes, F., Magistretti, P.J. and Regli, L. (2002) Aquaporins in Brain: Distribution, Physiology, and Pathophysiology. Journal of Cerebral Blood Flow & Metabolism, 22, 367-378. https://doi.org/10.1097%2F00004647-200204000-00001
Cheng, S.Y., Leonard, J.L. and Davis, P.J. (2010) Molecular Aspects of Thyroid Hormone Actions. Endocrine Reviews, 31, 139-170. https://doi.org/10.1210/er.2009-0007
Gorgulu, A., Kins, T., Cobanoglu, S., Unal, F., Izgi, N.I., Yanik, B., et al. (2000) Reduction of Edema and Infarction by Memantine and MK-801 after Focal Cerebral Ischaemia and Reperfusion in Rat. Acta Neurochirurgica, 142, 1287-1292. https://doi.org/10.1007/s007010070027
Talhada, D., Feiteiro, J., Costa, A.R., Talhada, T., Cairrão, E., Wieloch, T., Englund, E., Santos, C.R., Gonçalves, I. and Ruscher, K. (2019) Triiodothyronine Modulates Neuronal Plasticity Mechanisms to Enhance Functional Outcome after Stroke. Acta Neuropathologica Communications, 7, Article No. 216. https://doi.org/10.1186/s40478-019-0866-4
de Lange, P., Cioffi, F., Senese, R., Moreno, M., Lombardi, A., Silvestri, E., et al. (2011) Nonthyrotoxic Prevention of Diet-Induced Insulin Resistance by 3,5-diiodo-L-thyronine in Rats. Diabetes, 60, 2730-2739. https://doi.org/10.2337/db11-0207
Genovese, T., Impellizzeri, D., Ahmad, A., Cornelius, C., Campolo, M., Cuzzocrea, S. and Esposito, E. (2013) Post-Ischaemic Thyroid Hormone Treatment in a Rat Model of Acute Stroke. Brain Research, 1513, 92-102. https://doi.org/10.1016/j.brainres.2013.03.001
Skvortsova, V.I., Platonova, I.A., Shamalov, N.A., et al. (2016) Clinical and Immunobiochemical Study of Efficacy and Stress-Protective Properties of Thyroliberin at the Acute Stage of Carotid Ischemic Stroke. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova, No. s16, 5l-59.
Sayre, N.L., Sifuentes, M., Holstein, D., Cheng, S.Y., Zhu, X. and Lechleiter, J.D. (2017) Stimulation of Astrocyte Fatty acid Oxidation by Thyroid Hormone Is Protective against Ischemic Stroke-Induced Damage. Journal of Cerebral Blood Flow & Metabolism, 37, 514-527. https://doi.org/10.1177%2F0271678X16629153
Talhada, D., Santos, C.R.A., Gonçalves, I. and Ruscher K (2019) Thyroid Hormones in the Brain and Their Impact in Recovery Mechanisms after Stroke. Frontiers in Neurology, 10, Article No. 1103. https://doi.org/10.3389/fneur.2019.01103
Lourbopoulos, A., Mourouzis, I., Karapanayiotides, T., Nousiopoulou, E., Chatzigeorgiou, S., Mavridis, T., et al (2014) Changes in Thyroid Hormone Receptors after Permanent Cerebral Ischemia in Male Rats. Journal of Molecular Neuroscience, 54, 78-91. https://doi.org/10.1007/s12031-014-0253-3
Anyetei-Anum, C.S., Roggero, V.R. and Allison, L.A. (2018) Thyroid Hormone Receptor Localizationin Target Tissues. Journal of Endocrinology, 237, R19-R34. https://doi.org/10.1530/JOE-17-0708
Carlson, D.J., Strait, K.A., Schwartz, H.L. and Oppenheimer, J.H. (1994) Immunofluorescent Localization of Thyroid Hormone Receptor Isoforms in Glial Cells of Rat Brain. Endocrinology, 135, 1831-1836. https://doi.org/10.1210/endo.135.5.7525253
Yasuda, R. (2017) Biophysics of Biochemical Signaling in Dendritic Spines: Implications in Synaptic Plasticity. Biophysical Journal, 113, 2152-2159. https://doi.org/10.1016/j.bpj.2017.07.029
Brown, C.E., Boyd, J.D. and Murphy, T.H. (2010) Longitudinal in Vivo Imaging Reveals Balanced and Branch-Specific Remodeling of Mature Cortical Pyramidal Dendritic Arbors after Stroke. Journal of Cerebral Blood Flow & Metabolism, 30, 783-791. https://doi.org/10.1038%2Fjcbfm.2009.241
Kwon, S.E. and Chapman, E.R. (2011) Synaptophysin Regulates the Kinetics of Synaptic Vesicle Endocytosis in Central Neurons. Neuron, 70, 847-854. https://doi.org/10.1016/j.neuron.2011.04.001
Südhof, T.C. (2012) Calcium Control of Neurotransmitter Release. Cold Spring Harbor Perspectives in Biology, 4, Article No. a011353. https://doi.org/10.1101/cshperspect.a011353
Südhof, T.C. (2013) A Molecular Machine for Neurotransmitter Release: Synaptotagmin and Beyond. Nature Medicine, 19, 1227-1231. https://doi.org/10.1038/nm.3338
Turrigiano, G. (2011) Too Many Cooks? Intrinsic and Synaptic Homeostatic Mechanisms in Cortical Circuit Refinement. Annual Review of Neuroscience, 34, 89-103. https://doi.org/10.1146/annurev-neuro-060909-153238
Turrigiano, G. (2012) Homeostatic Synaptic Plasticity: Local and Global Mechanisms for Stabilizing Neuronal Function. Cold Spring Harbor Perspectives in Biology, 4, Article No. a005736. https://doi.org/10.1101/cshperspect.a005736
Clarkson, A.N., Overman, J.J., Zhong, S., Mueller, R., Lynch, G. and Carmichael, S.T. (2011) AMPA Receptor-Induced local Brain-Derived Neurotrophic Factor Signaling Mediates Motor Recovery after Stroke. Journal of Neuroscience, 31, 3766-3775. https://doi.org/10.1523/JNEUROSCI.5780-10.2011
Isaac, J.T.R., Ashby, M. and McBain, C.J. (2007) The Role of the GluR2 Subunit in AMPA Receptor Function and Synaptic Plasticity. Neuron, 54, 859-871. https://doi.org/10.1016/j.neuron.2007.06.001
Seung, H.J., Hyeong, S.C., Ki, J.K., Qing, Z.L. and Sung, K.W. (2009) Electrophysiological Characterization of AMPA and NMDA Receptors in Rat Dorsal Striatum. Korean Journal of Physiology & Pharmacology, 13, 209-214. https://doi.org/10.4196/kjpp.2009.13.3.209
Losi, G., Garzon, G. and Puia, G. (2008) Nongenomic Regulation of Glutamatergic Neurotransmission in Hippocampus by Thyroid Hormones. Neuroscience, 151, 155-163. https://doi.org/10.1016/j.neuroscience.2007.09.064
Boddington, L.J. and Reynolds, J.N.J. (2017) Targeting Interhemispheric Inhibition with Neuromodulation to Enhance Stroke Rehabilitation. Brain Stimulation, 10, 214-222. https://doi.org/10.1016/j.brs.2017.01.006
Carmichael, S.T. (2012) Brain Excitability in Stroke: The Yin and Yang of Stroke Progression. Archives of Neurology, 69, 161-167. https://doi.org/10.1001/archneurol.2011.1175
Ward, N.S. (2017) Restoring Brain Function after Stroke—Bridging the Gap between Animals and Humans. Nature Reviews Neurology, 13, 244-255. https://doi.org/10.1038/nrneurol.2017.34
Alia, C., Spalletti, C., Lai, S., Panarese, A., Micera, S. and Caleo, M. (2016) Reducing GABA A-Mediated Inhibition Improves Forelimb Motor Function after Focal Cortical Stroke in Mice. Scientific Reports, 29, Article No. 37823. https://doi.org/10.1038/srep37823
Clarkson, A.N., Huang, B.S., Macisaac, S.E., Mody, I. and Carmichael, S.T. (2010) Reducing Excessive GABA-Mediated Tonic Inhibition Promotes Functional Recovery after Stroke. Nature, 468, 305-309. https://doi.org/10.1038/nature09511
Zeiler, S.R., Gibson, E.M., Hoesch, R.E., Li, M.Y., Worley, P.F., O’Brien, R.J., et al. (2013) Medial Premotor Cortex Shows a Reduction in Inhibitory Markers and Mediates Recovery in a Mouse Model of Focal Stroke. Stroke, 44, 483-489. https://doi.org/10.1161/STROKEAHA.112.676940
Sammali, E., Alia, C., Vegliante, G., Colombo, V., Giordano, N., Pischiutta, F., et al. (2017) Intravenous Infusion of Human Bone Marrow Mesenchymal Stromal Cells Promotes Functional Recovery and Neuroplasticity after Ischemic Stroke in Mice. Scientific Reports, 7, Article No. 6962. https://doi.org/10.1038/s41598-017-07274-w
Mokhtari, T., Akbari, M., Malek, F., Kashani, I.R., Rastegar, T., Noorbakhsh, F., Ghazi-Khansari, M., Attari, F. and Hassanzadeh, G. (2017) Improvement of Memory and Learning by Intracerebroventricular Microinjection of T3 in Rat Model of Ischemic Brain Stroke Mediated by Upregulation of BDNF and GDNF in CA1 Hippocampal Region. DARU Journal of Pharmaceutical Sciences, 25, Article No. 4. https://doi.org/10.1186/s40199-017-0169-x
Sutherland, B.A., Neuhaus, A.A., Couch, Y., Balami, J.S., DeLuca, G.C., Hadley, G., et al. (2016) The Transient Intraluminal Filament Middle Cerebral Artery Occlusion Model as a Model of Endovascular Thrombectomy in Stroke. Journal of Cerebral Blood Flow & Metabolism, 36, 363-369. https://doi.org/10.1177%2F0271678X15606722
Shahjouei, S., Cai, P.Y., Ansari, S., Sharififar, S., Azari, H., Ganji, S., et al. (2016) Middle Cerebral Artery Occlusion Model of Stroke in Rodents. Journal of Vascular and Inter-Ventional Neurology, 8, 1-8.
Erfani, S., Khaksari, M., Oryan, S., Shamsaei, N., Aboutaleb, N., Nikbakht, F., et al. (2015) Visfatin Reduces Hippocampal CA1 Cells Death and Improves Learning and Memory Deficits after Transient Global Ischemia/Reperfusion. Neuropeptides, 49, 63-68. https://doi.org/10.1016/j.npep.2014.12.004
Chen, A., Xiong, L.-J., Tong, Y. and Mao, M. (2013) The Neuroprotective Roles of BDNF in Hypoxic Ischemic Brain Injury (Review). Biomedical Reports, 1, 167-176. https://doi.org/10.3892/br.2012.48
Duarte, E.P., Curcio, M., Canzoniero, L.M. and Duarte, C.B. (2012) Neuroprotection by GDNF in the Ischemic Brain. Growth Factors, 30, 242-257. https://doi.org/10.3109/08977194.2012.691478
Sui, L., Ren, W.-W. and Li, B.-M. (2010) Administration of Thyroid Hormone Increases Reelin and Brain-Derived Neurotrophic Factor Expression in Rat Hippocampus in Vivo. Brain Research, 1313, 9-24. https://doi.org/10.1016/j.brainres.2009.12.010
Campolo, M., Genovese, T., Impellizzeri, D., Ahmad, A., Cornelius, C., Cuzzocrea, S., et al. (2013) Post-Ischemic Thyroid Hormone Treatment in a Rat Model of Acute Stroke. The FASEB Journal, 27, 662.17. https://doi.org/10.1096/fasebj.27.1_supplement.662.17
Davis, P.J. (2011) Integrated Nongenomic and Genomic Actions of Thyroid Hormone on Blood Vessels. Current Opinion in Endocrinology & Diabetes and Obesity, 18, 293-294. https://doi.org/10.1097/MED.0b013e32834abeb2
Zhang, Y. and Meyer, M.A. (2010) Clinical Analysis on Alteration of Thyroid Hormones in the Serum of Patients with Acute Ischemic Stroke. Stroke Research and Treatment, 2010, Article ID: 290678. https://doi.org/10.4061/2010/290678
Hiroi, Y., Kim, H.-H., Ying, H., Furuya, F., Huang, Z., Simoncini, T., et al. (2006) Rapid Nongenomic Actions of Thyroid Hormone. Proceedings of the National Academy of Sciences of the United States of America, 103, 14104-14109. https://doi.org/10.1073/pnas.0601600103
Lin, H.-Y., Davis, F.B., Luidens, M.K., Mousa, S.A., Cao, J.H., Zhou, M., et al. (2011) Molecular Basis for Certain Neuroprotective Effects of Thyroid Hormone. Frontiers in Molecular Neuroscience, 4, Article No. 29. https://doi.org/10.3389/fnmol.2011.00029