AAM Advances in Applied Mathematics 2324-7991 Scientific Research Publishing 10.12677/AAM.2021.107253 AAM-44043 AAM20210700000_45490846.pdf 数学与物理 随机矩阵概率不等式类的证明 The Proof of Probability Inequality of Random Matrix 2 1 儒瑛 2 1 太原师范学院数学系,山西 晋中 null 01 07 2021 10 07 2410 2418 © Copyright 2014 by authors and Scientific Research Publishing Inc. 2014 This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

在证明随机矩阵满足限制等距性质以及估计限制等距常数时,Khintchine不等式、Hoeffding型不等式以及Bernstein型不等式都发挥着重要的作用。在实际应用当中,这三种不等式根据随机变量类别的不同又有很多变化。本文重点补充证明了当随机变量为矩阵时的Khintchine不等式、Hoeffding型不等式以及Bernstein型不等式,这些不等式在随机测量矩阵稀疏恢复证明过程中起到关键作用。 Khintchine’s inequality, Hoeffding’s inequality and Bernstein’s inequality play an important role in proving that random matrix satisfies the property of restricted isometry and estimating the constant of restricted isometry. In practical application, these three inequalities have many changes according to the different types of random variables. In this paper, we mainly prove the Khintchine inequality, Hoeffding type inequality and Bernstein type inequality when the random variable is a matrix. These inequalities play a key role in the proof of sparse restoration of random measurement matrix.

限制等距性质,亚高斯随机变量,标准高斯随机变量,Khintchine不等式,Hoeffding型不等式, Bernstein型不等式, Restricted Isometric Property Sub-Gaussian Random Variable Standard Gaussian Random Variable Khintchine Inequality Hoeffding Type Inequality Bernstein Type Inequality
摘要

在证明随机矩阵满足限制等距性质以及估计限制等距常数时,Khintchine不等式、Hoeffding型不等式以及Bernstein型不等式都发挥着重要的作用。在实际应用当中,这三种不等式根据随机变量类别的不同又有很多变化。本文重点补充证明了当随机变量为矩阵时的Khintchine不等式、Hoeffding型不等式以及Bernstein型不等式,这些不等式在随机测量矩阵稀疏恢复证明过程中起到关键作用。

关键词

限制等距性质,亚高斯随机变量,标准高斯随机变量,Khintchine不等式,Hoeffding型不等式, Bernstein型不等式

The Proof of Probability Inequality of Random Matrix<sup> </sup>

Ke Zheng, Ruying Song

Department of Mathematics, Taiyuan Normal University, Jinzhong Shanxi

Received: Jun. 19th, 2021; accepted: Jul. 11th, 2021; published: Jul. 22nd, 2021

ABSTRACT

Khintchine’s inequality, Hoeffding’s inequality and Bernstein’s inequality play an important role in proving that random matrix satisfies the property of restricted isometry and estimating the constant of restricted isometry. In practical application, these three inequalities have many changes according to the different types of random variables. In this paper, we mainly prove the Khintchine inequality, Hoeffding type inequality and Bernstein type inequality when the random variable is a matrix. These inequalities play a key role in the proof of sparse restoration of random measurement matrix.

Keywords:Restricted Isometric Property, Sub-Gaussian Random Variable, Standard Gaussian Random Variable, Khintchine Inequality, Hoeffding Type Inequality, Bernstein Type Inequality

Copyright © 2021 by author(s) and beplay安卓登录

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

压缩感知的模型如下 y = A x ,当测量矩阵是随机测量矩阵的时候,满足RIP性质的概率需要足够大,在证明过程中需要借助Khintchine不等式(见文献 [ 1 ] )、Hoeffding型不等式以及Bernstein型不等式(见文献 [ 2 ] ),这三种不等式有很多种,后两种分类是根据随机变量决定,随机变量可能是一个单独的变量,可能是向量,也可能是矩阵。

在文献 [ 3 ] 中介绍了Khintchine不等式,文献 [ 1 ] 介绍了非对易Khintchine不等式,读者可以参考。Khintchine不等式提供了Rademacher和以及高斯和的界定,之后又延伸到矩阵Rademacher和以及矩阵高斯和的Khintchine不等式,本文对这两种不等式进行了证明。

文献 [ 4 ] 介绍了标量Bernstein不等式,文献 [ 5 ] 中介绍了矩阵Bernstein不等式,在文献 [ 3 ] 中8.5节重点介绍了Noncommutative Bernstein不等式,文献 [ 2 ] [ 6 ] [ 7 ] 中也有相关介绍,其中随机变量是独立零均值自伴随机矩阵,而次指数版本Noncommutative Bernstein不等式在文献 [ 3 ] 练习题当中。本文在前人对这两种不等式总结以及文献 [ 3 ] 相关证明的基础上对又Noncommutative Bernstein不等式的次指数版本进行了证明。

在证明Noncommutative Bernstein不等式的同时需要Hoeffding型不等式,文献 [ 3 ] 重点介绍了Rademacher和的Hoeffding型不等式,在练习题中引入了矩阵高斯和的Hoeffding型不等式,本文将对这个不等式进行证明,同时将证明一些其他定理用以辅助证明Hoeffding型不等式。

2. 矩阵高斯和的Khintchine不等式

在证明之前首先需要以下引理来辅助证明Khintchine不等式。

引理2.1:设 g 是一标准高斯变量, B ∈ ℂ d × d 是一自伴矩阵。那么满足以下等式

E exp ( g θ B ) = exp ( θ 2 B 2 / 2 ) .(1)

证明:对于标准高斯随机变量 g ,期望和方差满足以下条件

E g = 0 , E g 2 = 1 (2)

见文献 [ 3 ], [ 8 ]。所以当标准高斯随机变量是奇数次幂时,

E g k = E ( g ) E ( g k − 1 ) = 0 × E ( g k − 1 ) = 0. (3)

我们将定理中等式左边按照泰勒展开式展开,即

E exp ( g θ B ) = ∑ k = 0 ∞ E ( g θ B ) k k ! = ∑ k = 0 ∞ E ( g ) k E ( θ B ) k k !

我们将(3)代入上式,可得

E exp ( g θ B ) = ∑ k = 0 ∞ E ( g θ B ) k k ! = ∑ k = 0 ∞ E ( g ) k E ( θ B ) k k ! = 1 + ∑ k = 1 ∞ E ( g ) 2 k E ( θ B ) 2 k ( 2 k ) ! ! + ∑ k = 1 ∞ E ( g ) 2 k − 1 E ( θ B ) 2 k − 1 ( 2 k − 1 ) ! ! = 1 + ∑ k = 1 ∞ E ( g ) 2 k E ( θ B ) 2 k ( 2 k ) ! ! = 1 + ∑ k = 1 ∞ 1 × ( θ B ) 2 k ( 2 k ) ! ! = ∑ k = 0 ∞ ( θ B ) 2 k ( 2 k ) ! ! = ∑ k = 0 ∞ ( θ B ) 2 k 2 k k ! = exp ( θ 2 B 2 / 2 )

等式结果得以证明。

以上引理证明时可以借鉴文献 [ 9 ] [ 10 ]。

引理2.2:设 ε 是一Rademacher随机变量, B ∈ ℂ d × d 是一自伴矩阵。那么满足以下等式

E exp ( ε θ B ) ≤ exp ( θ 2 B 2 / 2 ) .(4)

证明:对于Rademacher随机变量 ε ,期望和方差满足以下条件

E ε = 0 , E ε 2 = 1 (5)

我们将定理中等式左边按照泰勒展开式展开,即

E exp ( ε θ B ) = 1 2 ( exp ( θ B ) + exp ( − θ B ) ) = ∑ k = 0 ∞ ( θ B ) 2 k ( 2 k ) ! ≤ ∑ k = 0 ∞ ( θ B ) 2 k 2 k k ! = exp ( θ 2 B 2 / 2 ) (6)

等式结果得以证明。

该引理摘自文献 [ 3 ]。

定理2.1:在以上定理成立的条件下,满足以下不等式

E ‖ ∑ j = 1 M g j B j ‖ 2 → 2 ≤ 2 ln ( 2 d ) ‖ ∑ j = 1 M B j 2 ‖ 2 → 2 1 / 2 (7)

成立。

并且,对于Rademacher序列 ε = ( ε 1 , ⋯ , ε M ) ,

E ‖ ∑ j = 1 M ε j B j ‖ 2 → 2 ≤ 2 ln ( 2 d ) ‖ ∑ j = 1 M B j 2 ‖ 2 → 2 1 / 2 (8)

成立。

证明:首先证明不等式(7),先从(7)中左边开始着手

E ‖ ∑ j = 1 M g j B j ‖ 2 → 2 = E ( λ max ( ∑ j = 1 M g j B j ) ) ≤ E ∑ j = 1 d λ j ( ∑ j = 1 M g j B j ) ≤ E t r ( ∑ j = 1 M g j B j ) = E ∑ j = 1 M t r ( g j B j ) ≤ ∑ j = 1 M t r ( ln E exp ( g j B j ) )

由于 t r ( A + B ) = t r A + t r B 以及引理2.1可知,当 θ = 1 时可得 E exp ( g j B j ) = exp ( B j 2 / 2 ) ,上式继续推导可得

= ∑ j = 1 M t r ( ln exp ( B j ) 2 2 ) = ∑ j = 1 M t r ( ( B j ) 2 2 ) = t r ∑ j = 1 M ( ( B j ) 2 2 ) = 2 2 ∑ i = 1 d λ i ( ∑ j = 1 M ( B j ) 2 ) ≤ 2 d 2 λ max ( ∑ j = 1 M ( B j ) 2 ) = 2 d 2 ‖ ∑ j = 1 M ( B j ) 2 ‖ 2 → 2 1 / 2

最终结果为 E ‖ ∑ j = 1 M g j B j ‖ 2 → 2 ≤ 2 d 2 ‖ ∑ j = 1 M ( B j ) 2 ‖ 2 → 2 1 / 2 ,当 2 d 2 ≤ 2 ln ( 2 d ) 成立时,即 d ≤ 4 ln ( 2 d ) , E ‖ ∑ j = 1 M g j B j ‖ 2 → 2 ≤ 2 d 2 ‖ ∑ j = 1 M ( B j ) 2 ‖ 2 → 2 1 / 2 ≤ 2 ln ( 2 d ) ‖ ∑ j = 1 M B j 2 ‖ 2 → 2 1 / 2 成立。

类似证明(8)也成立,先从(8)中左边开始着手

E ‖ ∑ j = 1 M ε j B j ‖ 2 → 2 = E ( λ max ( ∑ j = 1 M ε j B j ) ) ≤ E ∑ j = 1 d λ j ( ∑ j = 1 M ε j B j ) ≤ E t r ( ∑ j = 1 M ε j B j ) = E ∑ j = 1 M t r ( ε j B j ) ≤ ∑ j = 1 M t r ( ln E exp ( ε j B j ) )

由于 t r ( A + B ) = t r A + t r B 以及引理2.2可知,当 θ = 1 时可得 E exp ( ε j B j ) ≤ exp ( B j 2 / 2 ) ,上式继续推导可得

= ∑ j = 1 M t r ( ln exp ( B j ) 2 2 ) = ∑ j = 1 M t r ( ( B j ) 2 2 ) = t r ∑ j = 1 M ( ( B j ) 2 2 ) = 2 2 ∑ i = 1 d λ i ( ∑ j = 1 M ( B j ) 2 ) ≤ 2 d 2 λ max ( ∑ j = 1 M ( B j ) 2 ) = 2 d 2 ‖ ∑ j = 1 M ( B j ) 2 ‖ 2 → 2 1 / 2

最终结果为 E ‖ ∑ j = 1 M ε j B j ‖ 2 → 2 ≤ 2 d 2 ‖ ∑ j = 1 M ( B j ) 2 ‖ 2 → 2 1 / 2 ,当 2 d 2 ≤ 2 ln ( 2 d ) 成立时,即 d ≤ 4 ln ( 2 d ) , E ‖ ∑ j = 1 M ε j B j ‖ 2 → 2 ≤ 2 d 2 ‖ ∑ j = 1 M ( B j ) 2 ‖ 2 → 2 1 / 2 ≤ 2 ln ( 2 d ) ‖ ∑ j = 1 M B j 2 ‖ 2 → 2 1 / 2 成立。

3. 矩阵高斯和的Hoeffding型不等式

在证明之前首先证明一个简单的定理,如下:

定理3.1:对于随机变量 X ,满足以下不等式

E X ≤ inf θ > 0 θ − 1 ln E [ exp ( θ X ) ] .

证明: E X = θ − 1 E ln [ exp ( θ X ) ] = θ − 1 ln E [ exp ( θ X ) ]

所以 θ − 1 ln E [ exp ( θ X ) ] 取下确界可得 E X ≤ inf θ > 0 θ − 1 ln E [ exp ( θ X ) ] 。

接下来开始证明矩阵高和Hoeffding型不等式,文献 [ 3 ] 中介绍了矩阵Rademacher和的Hoeffding型不等式,读者可以对比阅读。

定理3.2:设 g = ( g 1 , ⋯ , g M ) 是一个由独立标准高斯随机变量构成的向量,并且 B 1 , ⋯ , B M ∈ ℂ d × d 是自伴矩阵。引入 σ 2 = ‖ ∑ j = 1 M B j 2 ‖ 2 → 2 ,满足不等式

E exp ( θ ‖ ∑ j = 1 M g j B j ‖ 2 → 2 ) ≤ 2 d exp ( θ 2 σ 2 / 2 ) (9)

其中 θ > 0 。并且对于 t > 0 ,概率满足

P ( ‖ ∑ j = 1 M g j B j ‖ 2 → 2 ≥ t ) ≤ 2 d exp ( − t 2 2 σ 2 ) . (10)

证明:对于不等式(9),我们从(9)的左边开始证明

E exp ( θ ‖ ∑ j = 1 M g j B j ‖ 2 → 2 ) = E exp ( θ λ max ( ∑ j = 1 M g j B j ) ) = E λ max exp ( θ ∑ j = 1 M g j B j ) ≤ E ∑ j = 1 d λ j exp ( θ ∑ j = 1 M g j B j ) = E t r e θ ∑ j = 1 M g j B j ≤ t r exp ( ∑ j = 1 M ln E exp ( θ g j B j ) )

其中第二行的不等号应用了文献 [ 3 ] 中命题8.16的证明思路,等号应用了文献 [ 3 ] 中命题8.16以及 [ 11 ] 中的命题3.1证明时的思路,最后一个等号应用了文献 [ 3 ] 中命题8.18。接着上式继续证明

≤ t r exp ( ∑ j = 1 M ln exp ( θ 2 B j 2 / 2 ) ) = t r exp ( θ 2 ∑ j = 1 M B j 2 2 ) = exp ( θ 2 ∑ j = 1 d λ j ( ∑ j = 1 M B j 2 ) 2 ) ≤ exp ( θ 2 d λ max ( ∑ j = 1 M B j 2 ) 2 ) = exp ( θ 2 d ‖ ∑ j = 1 M B j 2 ‖ 2 → 2 2 ) = exp ( θ 2 d σ 2 2 )

在 e d / 2 ≤ 2 d ( d ≤ 2 ln 2 d )成立的条件下,不等式 exp ( d θ 2 σ 2 / 2 ) ≤ 2 d exp ( θ 2 σ 2 / 2 ) 成立,即

E exp ( θ ‖ ∑ j = 1 M g j B j ‖ 2 → 2 ) ≤ exp ( d θ 2 σ 2 / 2 ) ≤ 2 d exp ( θ 2 σ 2 / 2 ) .

不等式(9)得以证明。

对于概率不等式(10),证明过程可以借鉴文献 [ 3 ] 中命题8.20的证明过程如下,根据引理2.1可知

E exp ( g θ B ) = exp ( θ 2 B 2 / 2 ) ,这里 B 2 是半正定的。因此,文献 [ 3 ] 中公式(8.35)里 g ( θ ) = θ 2 / 2 并且 A l = B l 2 。

[ 3 ] 中命题8.19的参数 ρ 被给定

ρ = ‖ ∑ l = 1 M B l 2 ‖ 2 → 2 = σ 2

其中 ∑ l = 1 M B l 2 是半正定的。由此

P ( ‖ ∑ l M g l B l ‖ 2 → 2 ≥ t ) ≤ P ( λ max ( ∑ l = 1 M g l B l ) ≥ t ) + P ( λ max ( − ∑ l = 1 M g l B l ) ≥ t ) ≤ 2 d inf θ > 0 e − θ t + θ 2 σ 2 / 2 = 2 d e − t 2 / ( 2 σ 2 ) .

这里 θ 的最优选择是 θ = t / σ 2 。定理3.2的(10)得以证明。

接下来我们介绍矩阵版本的非对易伯恩斯坦不等式的次指数版本。

4. Noncommutative Bernstein不等式的次指数版本

首先给出证明时所需引理来辅助证明,如下:

引理4.1:设 Y ∈ ℂ d × d 是一个自伴随机矩阵。那么,对于 t ∈ ℝ ,

P ( λ max ( Y ) ≥ t ) ≤ inf θ > 0 exp { e − θ t E t r exp ( θ Y ) } . (11)

引理4.2:设 X 1 , ⋯ , X M ∈ ℂ d × d 是独立自伴随机矩阵。那么,对于 θ ∈ ℝ ,

E t r exp ( θ ∑ l = 1 M X l ) ≤ t r exp ( ∑ l = 1 M ln E exp ( θ X l ) ) . (12)

引理4.3:设 X 1 , ⋯ , X M ∈ ℂ d × d 是独立自伴随机矩阵。假设它们存在函数 g : ( 0 , ∞ ) → [ 0 , ∞ ) 以及固定的自伴矩阵 A 1 , ⋯ , A M 使得

E [ exp ( θ X l ) ] ≺ = exp ( g ( θ ) A k ) , 对 于 ∀ θ > 0 以 及 ∀ k ∈ [ M ] . (13)

那么, ρ : = λ max ( ∑ l = 1 M A l ) 。概率满足以下不等式

P ( λ max ( ∑ l = 1 M X l ) ≥ t ) ≤ d inf θ > 0 e − θ t + g ( θ ) ρ , t ∈ ℝ .

以上三个引理均摘自文献 [ 11 ]。接下来开始证明Noncommutative Bernstein不等式的次指数版本,其中Noncommutative Bernstein不等式在文献 [ 5 ] 中已经给出。

定理4.1 (Noncommutative Bernstein不等式的次指数版本):设 X 1 , ⋯ , X M ∈ ℂ d × d 是独立零均值自伴随机矩阵。假设

E [ X l n ] ≺ = n ! R n − 2 σ l 2 B l 2 / 2 , l ∈ [ M ] , (14)

对于某些自伴矩阵 B l ,设

σ 2 : = ‖ ∑ l = 1 M B l 2 ‖ 2 → 2 .

则满足以下概率不等式

P ( λ max ( ∑ l = 1 M X l ) ≥ t ) ≤ d exp ( − t 2 / 2 σ 2 + R t ) . (15)

其中 t > 0 。

证明:通过克拉默定理的启示,我们估计 X l 的矩生成函数。将指数函数展开为泰勒级数,利用Fubini定理交换期望和求和得到

E [ exp ( θ X l ) ] = 1 + θ E [ X l ] + ∑ n = 2 ∞ θ n E [ X l n ] n ! = 1 + θ 2 σ l 2 B l 2 2 ∑ n = 2 ∞ θ n − 2 E [ X l n ] n ! σ l 2 B l 2 / 2 ,

由于 E [ X l ] = 0 。定义 F l ( θ ) = ∑ n = 2 ∞ θ n − 2 E [ X l n ] n ! σ l 2 B l 2 / 2 ,我们可得

E [ exp ( θ X l ) ] = 1 + θ 2 σ l 2 B l 2 F l ( θ ) / 2 ≤ exp ( θ 2 σ l 2 B l 2 F l ( θ ) / 2 ) .

引入 F ( θ ) = max l ∈ [ M ] F l ( θ ) 并且应用 σ 2 : = ‖ ∑ l = 1 M B l 2 ‖ 2 → 2 ,我们从克拉默定理中(文献 [ 3 ] 中定理7.18)中可得

P ( λ max ( ∑ l = 1 M X l ) ≥ t ) ≤ inf θ > 0 { exp ( − θ t ) t r exp ( ∑ l = 1 M ln E exp ( θ X l ) ) } ≤ inf θ > 0 { exp ( − θ t ) t r exp ( ∑ l = 1 M ln exp ( θ 2 σ l 2 B l 2 F l ( θ ) / 2 ) ) } ≤ exp ( − θ t ) t r exp ( ∑ l = 1 M ( θ 2 σ l 2 B l 2 F l ( θ ) / 2 ) )

由于 E [ X l n ] ≤ E [ | X l | n ] ,假设文献 [ 3 ] 中(7.38)成立便推导出

F l ( θ ) ≤ ∑ n = 2 ∞ θ n − 2 E [ | X l | n ] n ! σ l 2 B l 2 / 2 ≤ ∑ n = 2 ∞ θ n − 2 n ! R n − 2 σ l 2 B l 2 / 2 n ! σ l 2 B l 2 / 2 = ∑ n = 2 ∞ ( θ R ) n − 2 = 1 1 − R θ

这里 R θ < 1 。所以 F ( θ ) ≤ ( 1 − R θ ) − 1 代入到以上概率不等式可得

P ( λ max ( ∑ l = 1 M X l ) ≥ t ) ≤ exp ( − θ t ) t r exp ( ∑ l = 1 M ( θ 2 σ l 2 B l 2 F l ( θ ) / 2 ) ) ≤ exp ( − θ t ) t r exp ( ∑ l = 1 M ( θ 2 σ l 2 B l 2 2 ( 1 − R θ ) ) ) = exp ( − θ t ) ∑ i = 1 d λ i ( exp ( ∑ l = 1 M ( θ 2 σ l 2 B l 2 2 ( 1 − R θ ) ) ) )

≤ d exp ( − θ t ) λ max ( exp ( ∑ l = 1 M ( θ 2 σ l 2 B l 2 2 ( 1 − R θ ) ) ) ) ≤ d exp ( − θ t ) exp ( θ 2 2 ( 1 − R θ ) λ max ( ∑ l = 1 M ( σ l 2 B l 2 ) ) ) ≤ d exp ( − θ t + θ 2 2 ( 1 − R θ ) λ max ( ∑ l = 1 M ( σ l 2 B l 2 ) ) )

现在我们选择 θ = t / ( R t + λ max ( ∑ l = 1 M ( σ l 2 B l 2 ) ) ) ,很明显满足 R θ < 1 。这便推导出

P ( λ max ( ∑ l = 1 M X l ) ≥ t ) ≤ d exp ( − θ t + θ 2 2 ( 1 − R θ ) λ max ( ∑ l = 1 M ( σ l 2 B l 2 ) ) ) ≤ d exp ( − t 2 R t + λ max ( ∑ l = 1 M ( σ l 2 B l 2 ) ) + t 2 ( R t + λ max ( ∑ l = 1 M ( σ l 2 B l 2 ) ) ) 2 2 ( 1 − R t R t + λ max ( ∑ l = 1 M ( σ l 2 B l 2 ) ) ) λ max ( ∑ l = 1 M ( σ l 2 B l 2 ) ) )

= d exp ( − t 2 / 2 R t + λ max ( ∑ l = 1 M ( σ l 2 B l 2 ) ) ) = d exp ( − t 2 / 2 R t + ‖ ∑ l = 1 M σ l 2 B l 2 ‖ 2 → 2 ) ≤ d exp ( − t 2 / 2 R t + ‖ ∑ l = 1 M B l 2 ‖ 2 → 2 ) = d exp ( − t 2 / 2 R t + λ max ( ∑ l = 1 M ( σ l 2 B l 2 ) ) ) = d exp ( − t 2 / 2 R t + ‖ ∑ l = 1 M σ l 2 B l 2 ‖ 2 → 2 ) ≤ d exp ( − t 2 / 2 R t + ‖ ∑ l = 1 M B l 2 ‖ 2 → 2 ) = d exp ( − t 2 / 2 R t + σ 2 )

其中 σ l 2 ∈ ( 0 , 1 ] ,这时满足不等式

P ( λ max ( ∑ l = 1 M X l ) ≥ t ) ≤ d exp ( − t 2 / 2 R t + σ 2 ) .

结论得证。特别的,当随机变量是标量时的Bernstein不等式如下:

定理4.2:设 X 1 , ⋯ , X M 是独立零均值随机变量,对于任意的整数 n ≥ 2 ,满足以下不等式

E | X l | n ≤ n ! R n − 2 σ l 2 / 2 , ∀ l ∈ [ M ] , (16)

对于某些常数 R > 0 以及 σ l > 0 , l ∈ [ M ] 。那么,对于 ∀ t > 0 ,满足概率不等式

P ( | ∑ l = 1 M X l | ≥ t ) ≤ 2 exp ( − t 2 / 2 σ 2 + R t ) . (17)

其中 σ 2 : = ∑ l = 1 M σ l 2 。

以上内容摘自文献 [ 3 ]。

5. 结束语

本文在文献 [ 3 ] 中研究的基础上,对其中一些未解决的问题进行了证明,补充了相关内容,使得这部分不等式内容更加充分,在今后的研究证明中起到一定作用。希望这些补充会对读者有一些启发。

文章引用

郑 珂,宋儒瑛. 随机矩阵概率不等式类的证明The Proof of Probability Inequality of Random Matrix[J]. 应用数学进展, 2021, 10(07): 2410-2418. https://doi.org/10.12677/AAM.2021.107253

参考文献 References Vershynin, R. (2012) Introduction to the Non-Asymptotic Analysis of Random Matrices. In: Eldar, Y. and Kutyniok, G., Eds., Compressed Sensing: Theory and Applications, Cambridge University Press, Cambridge, xii+544. Qiu, R. and Wicks, M. (2014) Cognitive Networked Sensing and Big Data. Springer, New York.
https://doi.org/10.1007/978-1-4614-4544-9
Foucart, S. and Rauhut, H. (2013) A Mathematical Introduction to Compressive Sensing. Springer, New York.
https://doi.org/10.1007/978-0-8176-4948-7
van der Vaart, A.W. and Wellner, J.A. (1996) Weak Convergence and Empirical Processes. Springer, New York.
https://doi.org/10.1007/978-1-4757-2545-2_3
Gross, D. (2011) Recovering Low-Rank Matrices from Few Coefficients in Any Basis. IEEE Transactions on Information Theory, 57, 1548-1566.
https://doi.org/10.1109/TIT.2011.2104999
Recht, B. (2011) A Simpler Approach to Matrix Completion. The Journal of Machine Learning Research, 12, 3413- 3430. Oliveira, R. (2009) Concentration of the Adjacency Matrix and of the Laplacian in Random Graphs with Independent Edges. arXiv:0911.0600. Baraniuk, R., Davenport, M.A., Duarte, M.F. and Hegde, C. (2011) An Introduction to Compressive Sensing. Rice University, Houston. Rauhut, H. (2010) Compressive Sensing and Structured Random Matrices. In: Fornasier, M., Ed., Theoretical Foundations and Numerical Methods for Sparse Recovery, Radon Series on Computational and Applied Mathematics, de Gruyter, Berlin, Vol. 9, 1-92. Oliveira, R. (2010) Sums of Random Hermitian Matrices and an Inequality by Rudelson. Electronic Communications in Probability, 15, 203-212.
https://doi.org/10.1214/ECP.v15-1544
Tropp, J.A. (2012) User-Friendly Tail Bounds for Sums of Random Matrices. Foundations of Computational Mathematics, 12, 389-434.
https://doi.org/10.1007/s10208-011-9099-z
Baidu
map