在城市的发展中,有限的城市空间要求必须发展地下空间,在工程建设中不可避免的会遇到深基坑的开挖,所以在施工过程中基坑开挖放坡后边坡的稳定性是十分重要的安全问题。本文通过控制变量法并采用理正岩土边坡稳定性分析系统对影响边坡稳定性的四种因素进行数值计算,并对其进行敏感性分析,从而找到边坡失稳的敏感性因素,为项目工程的质量安全提供重要的理论支撑。 In the development of the city, the limited urban space requires the development of underground space. In the construction of the project, the excavation of deep foundation pits will inevitably be encountered. Therefore, the stability of the slope after the excavation of the foundation pit during the construction process Sex is a very important safety issue. This paper uses the method of controlled variables and the Lizheng rock-soil slope stability analysis system to numerically calculate the four factors that affect the stability of the slope, and conduct sensitivity analysis on them, so as to find the sensitive factors of slope instability. Provide important theoretical support for the quality and safety of project engineering.
在城市的发展中,有限的城市空间要求必须发展地下空间,在工程建设中不可避免的会遇到深基坑的开挖,所以在施工过程中基坑开挖放坡后边坡的稳定性是十分重要的安全问题。本文通过控制变量法并采用理正岩土边坡稳定性分析系统对影响边坡稳定性的四种因素进行数值计算,并对其进行敏感性分析,从而找到边坡失稳的敏感性因素,为项目工程的质量安全提供重要的理论支撑。
工程边坡,稳定性系数,理正岩土边坡软件,基坑安全
Shaomeng Zhu*, Duoxi Yao
School of Earth and Environment, Anhui University of Science and Technology, Huainan Anhui
Received: Jun. 18th, 2021; accepted: Jul. 2nd, 2021; published: Jul. 21st, 2021
In the development of the city, the limited urban space requires the development of underground space. In the construction of the project, the excavation of deep foundation pits will inevitably be encountered. Therefore, the stability of the slope after the excavation of the foundation pit during the construction process Sex is a very important safety issue. This paper uses the method of controlled variables and the Lizheng rock-soil slope stability analysis system to numerically calculate the four factors that affect the stability of the slope, and conduct sensitivity analysis on them, so as to find the sensitive factors of slope instability. Provide important theoretical support for the quality and safety of project engineering.
Keywords:Engineering Slope, Stability Coefficient, Lizheng Rock-Soil Slope Software, Foundation Pit Safety
Copyright © 2021 by author(s) and beplay安卓登录
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/
城市的逐步发展往往离不开基础工程的建设,随着中国经济社会的不断发展,在城市化的发展背景下,城市用地紧缺的问题日益显著,因此为解决城市发展与土地资源供应不足的矛盾,如今城市基础建设逐渐向地下发展,越来越多的城市在发展地下轨道、综合水电的地下综合管廊、举足轻重的地下防空设施以及便利交通的下穿工程,因此在地下空间的开发中,深基坑的开挖和边坡的支护工程占据举足轻重的地位,它们的施工质量是直接影响整个工程的安全和品质。张志发 [
目前,在实际生活中,边坡稳定性系数的计算方法有很多,常见的有条分法、传递系数法、递推法、毕肖普法、有限元法、剩余推力法等等,但是总的来说可以分为两类,一类是以弹塑性理论为基础的数值计算方法,另一类是以极限平衡理论为基础的条分法。根据《建筑边坡工程技术规范》(GB50330-2002)规定:土质边坡和较大规模的碎裂结构岩质边坡宜采用圆弧滑动法计算稳定性系数,因此,本文选择条分法来对边坡进行稳定性计算。
条分法以极限平衡理论为基础,由瑞典人彼得森(K.E. Petterson)在1916年提出,在20世纪40年代由费伦纽斯(W. Fellenius) [
经过多年工程实践,对瑞典条分法已积累了大量的经验。用该法计算的安全系数一般比其他较严格的方法低10%~20%;在滑动面圆弧半径较大并且孔隙水压力较大时,安全系数计算值估计会比其他较严格的方法小一半。因此,这种方法是偏于安全的。
瑞典条分法的公式:
K = ∑ ( C l + W cos θ t g φ ) ∑ W sin θ
K——整个滑体剩余下滑力计算的安全系数;
L——单个土条的滑动面长度(m),l = bsecθ;
W——条块重力(kN),浸润线以上取重度,以下取饱和重度;
Θ——条块的重力线与通过此条块底面中点半径之间的夹角(度);
C、 φ ——土的抗剪强度指标,采用总应力法时,取总应力指标,采用有效应力法时,取有效应力指标。
如今大多数城市建设都是基于老城区的改造扩建,由于既有建筑以及老旧地下工程的存在,基础工程基坑深度较深,四周均有市政道路或既有建筑,地下情况较为复杂,影响边坡稳定性的因素有很多 [
我们此次以控制坡脚的角度β进行定量分析,固定边坡高度H、重度γ与抗剪强度指标,通过坡脚角度β的逐渐增大,分析边坡稳定性系数的变化。土质信息如表1。
定变量 | 坡高H/m | 重力密度γ/kN/m3 | 抗剪强度指标 | |
---|---|---|---|---|
内摩擦角Φp(˚) | 粘聚力Cp(kPa) | |||
数据 | 10 | 20 | 30 | 100 |
表1. 边坡稳定性验算参数(定变量)
通过理正岩土边坡稳定性分析系统6.5计算分析,计算边坡稳定性系数如下表2。
坡脚β/˚ | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
稳定性系数 | 6.578 | 5.864 | 5.291 | 4.856 | 4.555 | 4.299 | 4.078 | 3.872 | 3.678 | 3.494 | 3.305 | 3.141 | 2.972 | 2.805 |
表2. 不同坡角β下的边坡稳定性系数
在作图时,将坡角β作为横坐标,将稳定性系数的大小作为纵坐标,把数据转化为影响曲线来直观的表现坡角β与稳定性系数的关系,见下图1。
然后我们对得到的影响曲线进行拟合,得到坡角β与稳定性系数的关系曲线,见下图2。
图1. 坡角β的变化对稳定性系数的影响
图2. 坡角β对稳定性系数的拟合图
根据上图拟合图我们可以看到,拟合程度很高,坡角β的影响曲线的拟合度为0.9976,得到的关系曲线公式为:
y = − 2.176 ln ( x ) + 12.363
我们可以发现坡角在15˚~30˚范围逐渐增大时,边坡稳定性系数降低很快;在坡角在35˚~80˚之间增大时,边坡稳定性系数呈线性降低,且其降低速率相较于稳定性系数在15˚~30˚范围内的变化要小。
通过上拟合图及关系曲线可知:随着坡角β的增大与稳定性系数呈负相关。
在通过阅读的边坡稳定性规律变化的相关文献阅读,了解到坡高相对于坡角来说是另外一个较为直观的影响因素,在3.1中我们通过控制固定的坡高研究了不同坡角对边坡稳定性安全系数的变化影响,而这一次我们控制固定的坡角研究来坡高对于安全系数的影响及变化规律。土质信息及定变量如表3。
定变量 | 坡角β/˚ | 重力密度γ/kN/m3 | 抗剪强度指标 | |
---|---|---|---|---|
内摩擦角Φp(˚) | 粘聚力Cp(kPa) | |||
数据 | 60 | 20 | 30 | 100 |
表3. 边坡稳定性验算参数(定变量)
同样我们通过理正岩土边坡稳定性分析系统6.5计算分析,得到计算结果如下表4。
坡高 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|
稳定性系数 | 6.054 | 5.218 | 4.611 | 4.145 | 3.786 | 3.494 | 3.251 | 3.049 |
坡高 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
稳定性系数 | 2.875 | 2.726 | 2.597 | 2.482 | 2.379 | 2.289 | 2.207 | 2.132 |
表4. 不同坡高下的边坡稳定性系数
在作图时,将坡高H作为横坐标,将稳定性系数的大小作为纵坐标,我们也将数据转化为关系曲线图来直观的表现坡高与稳定性系数的关系,见下图3。
图3. 坡高H的变化对稳定性系数的影响
然后我们对得到的影响曲线进行拟合,得到坡高H与稳定性系数的关系曲线,见下图4。
图4. 坡高H对稳定性系数的拟合图
根据上图拟合图我们可以看到,拟合程度很高,坡高H的影响曲线的拟合度为0.9993,得到的关系曲线公式为:
y = 19.893 x − 0.751
由上坡高与边坡稳定性系数的折线图,我们可以明显的看到在坡角为60˚时,随着坡高的增大稳定性系数有明显变化。在坡高H在4 m到7 m增大时,边坡稳定性系数下降的很快;在7 m增大到12 m的过程中,可以看见稳定性系数下降速率缓慢放缓,稳定性系数逐渐趋于平缓;在坡高由13 m增大到20 m的过程中,稳定性系数的下降速率约为0.1,可近似看为水平,此阶段坡高的增加对稳定性系数的影响很小。
综上所述,通过上拟合图及关系曲线可知:随着坡高H增大与稳定性系数呈负相关。
在3.1和3.2中我们讨论了边坡坡面形状对稳定性系数的影响,但是通过相关文献的阅读,得知边坡稳定性不仅仅与坡面形状有关,还与边坡土质的抗剪强度指标有关,因此接下来我们分别通过控制岩(土)体的内摩擦角Φp和粘聚力Cp来探讨稳定性系数的变化规律。
首先,我们设计一边坡模型,固定坡角β为60˚,固定坡高H为10 m,边坡土质信息固定粘聚力Cp为100 kPa。通过改变理正岩土边坡稳定性分析系统里岩(土)体中土层内摩擦角Φp的大小模拟不同土质构成的边坡。边坡具体参数如下表5。
定变量 | 坡角β/˚ | 坡高H/m | 重力密度γ/kN/m3 | 抗剪强度指标 |
---|---|---|---|---|
粘聚力Cp(kPa) | ||||
数据 | 60 | 10 | 20 | 100 |
表5. 边坡稳定性验算参数(定变量)
通过理正岩土边坡稳定性分析系统6.5计算分析,得到计算结果如下表6。
内摩擦角 | 15 | 20 | 25 | 30 | 35 | 40 | 45 |
---|---|---|---|---|---|---|---|
稳定性系数 | 3.049 | 3.191 | 3.337 | 3.494 | 3.658 | 3.835 | 4.038 |
表6. 理正岩土边坡稳定性计算分析结果
在作图时,将内摩擦角Φp作为横坐标,将稳定性系数的大小作为纵坐标,我们也将数据转化为关系曲线图来直观的表现内摩擦角Φp与稳定性系数的关系,见下图5。
图5. 内摩擦角Φp变化对稳定性系数的影响
然后我们对得到的影响曲线进行拟合,得到内摩擦角Φp与稳定性系数的关系曲线,见下图6。
图6. 内摩擦角Φp对稳定性系数的拟合图
根据上图拟合图我们可以看到,拟合程度很高,内摩擦角Φp的影响曲线的拟合度为0.9996,得到的关系曲线公式为:
y = 2.6472 e 0.0093 x
通过上拟合图及关系曲线可知:内摩擦Φp与稳定性系数呈正相关。
这次我们将岩土的内摩擦角作为定变量,设计一边坡模型,依旧固定坡角β为60˚,固定坡高H为10 m,内摩擦角设为30˚。改变理正岩土中岩(土)体中土层粘聚力Cp的大小模拟不同土质构成的边坡。边坡具体参数如下表7。
定变量 | 坡角β/˚ | 坡高H/m | 重力密度γ/kN/m3 | 抗剪强度指标 |
---|---|---|---|---|
内摩擦角Φp(˚) | ||||
数据 | 60 | 10 | 20 | 30 |
表7. 边坡参数
通过理正岩土边坡稳定性分析系统6.5计算分析,得到计算结果如下表8。
粘聚力 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
---|---|---|---|---|---|---|---|---|---|
稳定性系数 | 1.212 | 1.528 | 1.824 | 2.115 | 2.394 | 2.672 | 2.948 | 3.224 | 3.494 |
表8. 边坡稳定性计算分析结果
在作图时,将粘聚力Cp作为横坐标,将稳定性系数的大小作为纵坐标,我们也将数据转化为关系曲线图来直观的表现粘聚力Cp与稳定性系数的关系,见下图7。
然后我们对得到的影响曲线进行拟合,得到粘聚力Cp与稳定性系数的关系曲线,见下图8。
图7. 粘聚力Cp变化对稳定性系数的影响
图8. 粘聚力Cp对稳定性系数的拟合图
根据上图拟合图我们可以看到,拟合程度很高,粘聚力Cp的影响曲线的拟合度为0.9995,得到的关系曲线公式为:
y = 0.0284 x + 0.6769
我们将粘聚力Cp和内摩擦角Φp综合考虑,在作图时横坐标只考虑数值的大小,忽略粘聚力Cp和内摩擦角Φp的单位,纵坐标为稳定性系数。
得到粘聚力Cp和内摩擦角Φp的变化对稳定性系数的影响曲线,见下图9。
图9. 粘聚力Cp和内摩擦角Φp变化对稳定性系数的影响
然后我们对得到的影响曲线进行拟合,得到粘聚力Cp和内摩擦角Φp与稳定性系数的关系曲线,见下图10。
图10. 粘聚力Cp和内摩擦角Φp对稳定性系数的拟合图
通过以上分析粘聚力Cp和内摩擦角Φp对稳定性系数进行拟合得到的曲线,求出粘聚力Cp和稳定性系数的关系曲线以及内摩擦角Φp和稳定性系数的关系曲线,我们可以发现粘聚力Cp的改变对稳定性系数的影响比内摩擦角Φp的改变对稳定性系数的影响要大。也就是说粘聚力的变化对边坡稳定性的影响更大。因此在项目工程上,为预防边坡失稳的事故发生,需关注土体粘聚力的变化,时刻注意粘聚力的变化对边坡稳定性的影响,这是重点工作。
本次主要通过理正岩土软件中边坡稳定分析系统对边坡进行稳定性计算,分析了对边坡有较大影响的四种因素对边坡稳定性的影响。由于条件限制,我们不可能通过实地实验直观的研究滑坡破坏形式来进行稳定性分析,所以我们只能通过软件计算出稳定性系数来反映边坡的稳定性 [
1) 滑坡形成的外因:
坡角与边坡稳定性系数的关系曲线呈对数函数形式。在坡角较小时,坡角的变化会引起稳定性的急剧降低,坡度越大坡角对稳定性系数的影响越来越小,但是坡角越大边坡越不稳定性。因此在实际工程中,放坡角度在30˚~45˚之间最为适宜。
坡高与边坡稳定性关系曲线呈幂函数的形式。通过拟合曲线我们可以发现在坡高较小时,坡高的变化会引起稳定性系数的急剧下降。
2) 滑坡形成的内因:
内摩擦角与边坡稳定性系数的关系曲线呈指数函数形式;粘聚力与边坡稳定性系数的关系呈线性关系。在二者的拟合曲线中,粘聚力的变化对滑坡稳定性的影响更大。因此,在实际工程中我们应该重点关注岩土体粘聚力的变化,为项目工程的质量安全提供重要的数据支撑。
边坡失稳一直是项目施工中重点防治问题,防治问题漫长而艰巨,在未来很长一段时间里,边坡稳定都会是工程项目的重点关注对象。按照我国的有关规定,做好每一步,促使我们在工程安全上做出自己力所能及的贡献。
祝绍猛,姚多喜. 基于理正软件研究工程边坡的稳定性Research on the Stability of Engineering Slope Based on Lizheng Software[J]. 土木工程, 2021, 10(07): 656-665. https://doi.org/10.12677/HJCE.2021.107074