JSTA Journal of Sensor Technology and Application 2331-0235 Scientific Research Publishing 10.12677/JSTA.2021.93021 JSTA-44013 JSTA20210300000_68339432.pdf 工程技术 光纤供能水下摄像原型系统 A Power-Over-Fiber Underwater Camera Prototype System 华勇 2 1 向刚 3 1 4 1 山西标伦电子科技有限公司,山西 晋中 中化学交通建设集团有限公司,山东 济南 天津海德尔科技有限公司,天津 null 01 07 2021 09 03 183 187 © Copyright 2014 by authors and Scientific Research Publishing Inc. 2014 This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

为实现供电安全性高的水下长距离实时摄像,建立了光纤供能水下摄像系统。基站激光器发射的光通过62.5 μm多模光纤传输至远端,经过光伏能量器为远程摄像机和光纤通信单元供电。通过波分复用技术在一根单模光纤上实现基站控制系统与摄像机的双向通信,控制系统通过单模光纤发送摄像指令,摄像机将获取的实时图像由单模光纤传回基站。实验采用功率1.95 W、波长830 nm的光纤激光器和510 m长的多模光纤,在远端获取456 mW电功率,实现了640 × 480分辨率图像的实时传输。光纤供能水下摄像系统通过光纤输能和通信,具有无源、电绝缘、抗电磁干扰和传输线质量轻等优点,可实现长期、实时和长距离摄像,适用于海底观测网、油气资源勘探平台、油气管道传输和海洋工程作业等领域的水下视频监测。 A power-over-fiber underwater camera prototype system is established to obtain the real time underwater image over long distance with high power supply security. Laser power at a base station is transmitted over a 62.5 μm multimode fiber and provides the electric power for the remote camera and optical fiber communication unit by a photovoltaic power converter. The bidirectional communication between base station control system and remote camera is realized in a single-mode fiber by wavelength division multiplexing. The control system sends a photographing instruction and then the remote camera sends back the real time image over the single-mode optical fiber. In the experiment, a 1.95 W@830 nm optical fiber laser and a 510 m multimode optical fiber were used to make 456 mW electric power available at the remote site, and 640 × 480 pixels resolution image can be transmitted back to the base station in real time. The power-over-fiber underwater camera system transmits both power and communication data in fiber. So it has the advantages of passive, electric insulating, antielectromagnetic interference and light mass of transmission lines. Furthermore, the power-over-fiber underwater camera system can implement a long term, real time and long distance underwater camera, and can be applied to seafloor observatory, oil and gas resources exploration platform, oil and gas pipeline transmission, ocean engineering for underwater video monitoring.

光纤供能,水下摄像,海底观测, Power-Over-Fiber Underwater Camera Sea Floor Observatory
摘要

为实现供电安全性高的水下长距离实时摄像,建立了光纤供能水下摄像系统。基站激光器发射的光通过62.5 μm多模光纤传输至远端,经过光伏能量器为远程摄像机和光纤通信单元供电。通过波分复用技术在一根单模光纤上实现基站控制系统与摄像机的双向通信,控制系统通过单模光纤发送摄像指令,摄像机将获取的实时图像由单模光纤传回基站。实验采用功率1.95 W、波长830 nm的光纤激光器和510 m长的多模光纤,在远端获取456 mW电功率,实现了640 × 480分辨率图像的实时传输。光纤供能水下摄像系统通过光纤输能和通信,具有无源、电绝缘、抗电磁干扰和传输线质量轻等优点,可实现长期、实时和长距离摄像,适用于海底观测网、油气资源勘探平台、油气管道传输和海洋工程作业等领域的水下视频监测。

关键词

光纤供能,水下摄像,海底观测

A Power-Over-Fiber Underwater Camera Prototype System<sup> </sup>

Huayong Zhang1, Xianggang Wang2, Yong Li1

1Tianjin Highideal Technology Co., LTD., Tianjin

2China National Chemical Communications Construction Group Co., LTD., Jinan Shandong

3Shanxi Biaolun Electronic Technology Co., Ltd., Jinzhong Shanxi

Received: May 26th, 2021; accepted: Jul. 14th, 2021; published: Jul. 21st, 2021

ABSTRACT

A power-over-fiber underwater camera prototype system is established to obtain the real time underwater image over long distance with high power supply security. Laser power at a base station is transmitted over a 62.5 μm multimode fiber and provides the electric power for the remote camera and optical fiber communication unit by a photovoltaic power converter. The bidirectional communication between base station control system and remote camera is realized in a single-mode fiber by wavelength division multiplexing. The control system sends a photographing instruction and then the remote camera sends back the real time image over the single-mode optical fiber. In the experiment, a 1.95 W@830 nm optical fiber laser and a 510 m multimode optical fiber were used to make 456 mW electric power available at the remote site, and 640 × 480 pixels resolution image can be transmitted back to the base station in real time. The power-over-fiber underwater camera system transmits both power and communication data in fiber. So it has the advantages of passive, electric insulating, antielectromagnetic interference and light mass of transmission lines. Furthermore, the power-over-fiber underwater camera system can implement a long term, real time and long distance underwater camera, and can be applied to seafloor observatory, oil and gas resources exploration platform, oil and gas pipeline transmission, ocean engineering for underwater video monitoring.

Keywords:Power-Over-Fiber, Underwater Camera, Sea Floor Observatory

Copyright © 2021 by author(s) and beplay安卓登录

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

光纤供能技术通过光纤传输激光至远端,经过光伏能量转换器将光能转化成电能,为远程设备供电,在高压供电、无源光网络、光纤无线电和远程传感等领域得到了广泛应用 [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ]。这种技术无须引入电池或导线供电,具有无源、电绝缘和抗电磁干扰等光纤固有优点。此外,光纤的体积小、质量轻,易实现长距离传输和操作,通信带宽大,可传输高速信号。

近年来,光纤供能技术在海洋观测领域也得到了应用,如在海底观测网中用于实现低功耗观测仪器的长距离扩展,通过一根单模光纤实现供电和双向通信,通信速率5 Mbit/s,扩展距离长达10 km [ 6 ] [ 7 ]。在海洋观测、海洋资源勘探和水下工程等领域,往往需要通过水下摄像技术来获取水下目标实时图像信息。目前的水下摄像产品大多采用电缆供电,不易实现长距离扩展。而对油气资源勘探平台、油气传输管道或海洋工程平台进行水下视频监测时,若供电电缆断裂引起火花可能引发十分严重的后果。通过光纤供能进行水下摄像,容易实现长距离扩展,光纤本身的电气绝缘也保证了供电安全性,采用光纤通信可避免电磁干扰,有利于图像传输的稳定。本文介绍了光纤供能水下摄像的工作原理、系统组成及各部分的设计与实现,搭建完成了光纤供能远程摄像实验系统,在传输光纤大于500 m时,实现了640 × 480分辨率图像的实时获取,实验验证了光纤供能技术应用于长距离水下实时摄像的可行性。

2. 光纤供能水下摄像工作原理

图1为光纤供能水下摄像系统原理图,分为基站、长距离传输光纤和远程单元三部分。基站主要由控制系统、高功率激光器、光纤收发单元构成,远程单元包括光伏能量转换器、DC-DC转换电路、光纤收发单元、摄像机和微处理器构成。

图1. 光纤供能水下摄像系统工作原理图

由激光器发射的光经过多模光纤传输至远端,经光伏能量转换器和DC-DC转换电路后,为远程摄像机和光纤收发单元供电。通过波分复用技术在一根单模光纤上实现基站控制系统与摄像机的双向通信,波长为1550 nm和1310 nm,控制系统通过单模光纤发送摄像指令,微处理器响应指令并控制摄像机工作,之后将获取的实时图像由单模光纤传回基站控制系统,从而实现水下远程图像的实时获取。

3. 水下摄像原型系统设计 3.1. 远程光纤供电

基站高功率激光器采用JDSU公司的830 nm光功率模块(photonic power module, PPM),输出光纤直径60 μm,最大输出光功率不小于2 W。光伏能量转换器采用JDSU的PPC-6E模块,最大输入光功率2 W,对于830 nm波长其转换效率最高可达到40%以上。供能传输光纤采用62.5 μm多模光纤。

PPC-6E的典型开路电压在6.40 V左右,实际输出电压大小与负载阻抗有关。为得到稳定供电电压,采用XL6009芯片实现DC-DC电压转换电路,输入电压范围DC 4 V~30 V,输出电压范围DC 1.23 V~28 V,实际工作时调整为固定值3.3 V左右,为远程摄像系统和光纤通信单元供电。

3.2. 光纤通信单元

光纤通信单元采用低功耗设计的单模单纤双向收发一体模块,供电电压为3.3 V,接口电平为TTL电平,模块采用1310 nm和1550 nm两个波长和波分复用器实现单根光纤的双向通信,需要成对使用,最高通信速率为10 Mb/s,通信距离可达10 km。通信光纤采用单模光纤。

3.3. 摄像系统

摄像系统采用深圳高美迪亚电子科技有限公司的C1098低功耗摄像模块,尺寸仅20 × 28 mm,最高分辨率为640 × 480,工作电压3.3 V,通信为UART接口,最高速率460.8 Kbps。可通过串口发送拍照命令来获取高解析度的单帧静态图像,模块集成了图像压缩处理器可将图像数据压缩成JPEG格式通过串口发送。C1098可用做摄像机或JPEG压缩格式照相机。

3.4. 基站控制系统

基站控制系统的主要功能包括远程摄像机工作模式设定、控制指令发送、图像显示和存储等。实验中基站控制系统采用PC机实现,实际应用可根据需要改成其他控制器或处理器。PC机串口与基站光纤收发单元之间通过串口转TTL模块完成电平转换,控制指令先后经过串口、基站光纤收发单元、单模光纤和远程光纤收发单元发送至摄像系统,获取的图像数据可沿着相反链路传回PC机。

4. 远程摄像实验

图2为基站与远程单元的供电与通信电路,图3为光纤供能远程摄像实验系统。供能光纤采用62.5 μm多模光纤,损耗约为4 dB/km@830 nm,长度510 m,通信光纤为600 m长单模光纤。

图2. 基站与远程单元的供电与通信电路

实验中,激光器输出功率为1.95 W,与多模光纤通过法兰盘连接,法兰盘和光纤接头的总插入损耗约为0.4 dB,经过510 m长的多模光纤后,测量输出光功率为1.13 W,功率测量采用的是北京光电技术研究所的M92A型光功率计。此时远端获取的功率可保证远程摄像系统和光纤收发模块正常工作。

图3中PC机的显示画面为连续多次拍摄后获得的实时图像,分辨率为640 × 480。经测量,光伏能量转换器的输出电压为6.0 V,输出电流76 mA。DC-DC转换电路的输出电压为3.3 V,光纤收发模块和摄像系统的最大工作电流为26 mA和71 mA。从而可计算光伏能量转换器的转换效率约为40%,DC-DC转换电路的效率约为70%。

图3. 光纤供能远程摄像实验系统

实验中的远程单元未完成水密封装,为获取高质量水下图像还需要集成照明系统,但本实验验证了光纤供能可应用于长距离水下实时摄像。实际系统在设计时,可通过提高激光器功率、采用多根光纤输能、选用低损耗输能光纤等方式来提高远端接收光功率。为提高远端供电利用率,应尽量降低摄像模块和光纤通信单元的功耗,提高DC-DC转换电路的效率。

5. 结论

本文设计并实现了基于光纤供能和通信的远程摄像实验系统,经510 m多模光纤供电和600 m单模光纤,可获取640 × 480分辨率的远程实时图像,验证了通过光纤供能技术可实现长距离水下实时摄像。光纤供能水下摄像具有无源、电绝缘和抗电磁干扰等优点,传输光纤质量轻,易于长距离操作,其扩展能力强、供电安全和抗干扰能力强的特点适合于海底观测网、油气资源勘探和油气管道传输和海洋工程作业等领域进行长期、实时和长距离水下视频监测。

文章引用

张华勇,王向刚,李勇. 光纤供能水下摄像原型系统A Power-Over-Fiber Underwater Camera Prototype System[J]. 传感器技术与应用, 2021, 09(03): 183-187. https://doi.org/10.12677/JSTA.2021.93021

参考文献

[ 1 ] Werthen, J.G., Widjaja, S., Wu, T.C., et al. (2005) Power over Fiber: A Review of Replacing Copper by Fiber in Critical Applications. Proceedings of International Conference on Optical Technologies for Arming, Safing, Fuzing and Firing, San Diego, California, Vol. 5871, 58710C. https://doi.org/10.1117/12.619753

[ 2 ] Wake, D., Gomes, N.J., Lethien, C., et al. (2008) An Optically Powered Radio over Fiber Remote Unit Using Wavelength Division Multiplexing. 2008 International Topical Meeting on Microwave Photonics Jointly Held with the 2008 Asia-Pacific Microwave Photonics Conference, Gold Coast, 9 September-3 October 2008, 197-200. https://doi.org/10.1109/MWP.2008.4666670

[ 3 ] Nazare, F.V.B. and Werneck, M.M. (2010) Temperature and Current Monitoring System for Transmission Lines Using Power-Over-Fiber Technology. 2010 IEEE Instrumentation and Measurement Technology Conference, Austin, Texas, 3-6 May 2010, 779-784.

[ 4 ] Penze, R.S., Rosolem, J.B., Duarte, U.R., et al. (2014) Fiber Powered Extender for XG-PONG-PON Applications. IEEE/OSA Optical Communications and Networking, 6, 250-258. https://doi.org/10.1364/JOCN.6.000250

[ 5 ] Schrenk, B., Poppe, A., Stierle, M., et al. (2015) Fully-Passive Optical Switch Introducing Dynamicity and Flexibility to Metro-Access. IEEE Photonics Technology Letters, 27, 486-489. https://doi.org/10.1109/LPT.2014.2382479

[ 6 ] Audo, F., Guegan, M., Quintard, V., et al. (2011) Quasi-All-Optical Network Extension for Submarine Cabled Observatories. Optical Engineering, 50, 045001. https://doi.org/10.1117/1.3560542

[ 7 ] Perhirin, S., Audo, F., Guegan, M., et al. (2013) A Power-Over-Fiber System and Its Low Consumption Remote Equipment for Submarine Applications. 2013 MTS/IEEE OCEANS, Bergen, 10-14 June 2013, 1-6. https://doi.org/10.1109/OCEANS-Bergen.2013.6608175

References Werthen, J.G., Widjaja, S., Wu, T.C., et al. (2005) Power over Fiber: A Review of Replacing Copper by Fiber in Critical Applications. Proceedings of International Conference on Optical Technologies for Arming, Safing, Fuzing and Firing, San Diego, California, Vol. 5871, 58710C.
https://doi.org/10.1117/12.619753
Wake, D., Gomes, N.J., Lethien, C., et al. (2008) An Optically Powered Radio over Fiber Remote Unit Using Wavelength Division Multiplexing. 2008 International Topical Meeting on Microwave Photonics Jointly Held with the 2008 Asia-Pacific Microwave Photonics Conference, Gold Coast, 9 September-3 October 2008, 197-200.
https://doi.org/10.1109/MWP.2008.4666670
Nazare, F.V.B. and Werneck, M.M. (2010) Temperature and Current Monitoring System for Transmission Lines Using Power-Over-Fiber Technology. 2010 IEEE Instrumentation and Measurement Technology Conference, Austin, Texas, 3-6 May 2010, 779-784. Penze, R.S., Rosolem, J.B., Duarte, U.R., et al. (2014) Fiber Powered Extender for XG-PONG-PON Applications. IEEE/OSA Optical Communications and Networking, 6, 250-258.
https://doi.org/10.1364/JOCN.6.000250
Schrenk, B., Poppe, A., Stierle, M., et al. (2015) Fully-Passive Optical Switch Introducing Dynamicity and Flexibility to Metro-Access. IEEE Photonics Technology Letters, 27, 486-489.
https://doi.org/10.1109/LPT.2014.2382479
Audo, F., Guegan, M., Quintard, V., et al. (2011) Quasi-All-Optical Network Extension for Submarine Cabled Observatories. Optical Engineering, 50, 045001.
https://doi.org/10.1117/1.3560542
Perhirin, S., Audo, F., Guegan, M., et al. (2013) A Power-Over-Fiber System and Its Low Consumption Remote Equipment for Submarine Applications. 2013 MTS/IEEE OCEANS, Bergen, 10-14 June 2013, 1-6.
https://doi.org/10.1109/OCEANS-Bergen.2013.6608175
Baidu
map