血管内皮细胞属于单层扁平上皮,主要位于心、血管和淋巴管内表面,在机体凝血系统方面发挥重要作用。内皮细胞受到损伤,对判断疾病进展及预后有一定指导意义。硫化氢作为第3种气体信号分子,能激活内皮细胞ATP敏感钾通道,舒张血管、抑制内皮细胞与白细胞间的黏附、直接或间接降低内皮细胞氧化应激状态,从而降低炎症水平,维持血管内皮细胞功能,减轻内皮细胞损伤后的血管重构,进而维护器官功能改善疾病预后。本文就硫化氢对血管内皮细胞凝血功能影响的研究进展作一综述。 Vascular endothelial cells belong to a single layer of flat epithelium, mainly located on the inner surface of the heart, blood vessels and lymphatics, and play an important role in the body’s blood coagulation system. The injury of endothelial cells has a certain guiding significance in judging the progression and prognosis of diseases. Hydrogen sulfide as the third kind of gas signal molecule, it can activate endothelial cell ATP sensitive potassium channels, diastolic blood vessels, inhibit the adhesion between endothelial cells and white blood cells, endothelial cells directly and indirectly reduce the oxidative stress status, thus reducing inflammation levels, maintain vascular endothelial cell function, reduce the endothelial cells of vascular remodeling after injury, and maintain organ function improving the prognosis of disease. This article reviews the research progress on the effect of hydrogen sulfide on the coagulation function of vascular endothelial cells.
内皮细胞,硫化氢,凝血物质, Endothelial Cells
Hydrogen Sulfide
Coagulation Material
摘要
Vascular endothelial cells belong to a single layer of flat epithelium, mainly located on the inner surface of the heart, blood vessels and lymphatics, and play an important role in the body’s blood coagulation system. The injury of endothelial cells has a certain guiding significance in judging the progression and prognosis of diseases. Hydrogen sulfide as the third kind of gas signal molecule, it can activate endothelial cell ATP sensitive potassium channels, diastolic blood vessels, inhibit the adhesion between endothelial cells and white blood cells, endothelial cells directly and indirectly reduce the oxidative stress status, thus reducing inflammation levels, maintain vascular endothelial cell function, reduce the endothelial cells of vascular remodeling after injury, and maintain organ function improving the prognosis of disease. This article reviews the research progress on the effect of hydrogen sulfide on the coagulation function of vascular endothelial cells.
Keywords:Endothelial Cells, Hydrogen Sulfide, Coagulation Material
董国赟,王献珍,李 毅. 硫化氢对内皮细胞分泌凝血物质影响的研究进展Research Progress on the Effect of Hydrogen Sulfide on the Secretion of Clotting Substances in Endothelial Cells[J]. 临床医学进展, 2021, 11(07): 3152-3157. https://doi.org/10.12677/ACM.2021.117457
参考文献References
Kolluru, G.K., Shen, X. and Kevil, C.G. (2020) Reactive Sulfur Species: A New Redox Player in Cardiovascular Pathophysiology. Arteriosclerosis, Thrombosis, and Vascular Biology, 40, 874-884. https://doi.org/10.1161/ATVBAHA.120.314084
Kar, S., Kambis, T.N. and Mishra, P.K. (2019) Hydrogen Sulfide-Mediated Regulation of Cell Death Signaling Ameliorates Adverse Cardiac Remodeling and Diabetic Cardiomyopathy. The American Journal of Physiology-Heart and Circulatory Physiology, 316, H1237-H1252. https://doi.org/10.1152/ajpheart.00004.2019
李超, 王岩. 硫化氢在糖尿病肾病中的保护作用及机制研究进展[J]. 检验医学与临床, 2018, 15(22): 3466-3470.
Gheibi, S., Jeddi, S., Kashfi, K., et al. (2018) Regulation of Vascular Tone Homeostasis by NO and HS: Implications in Hypertension. Biochemical Pharmacology, 149, 42-59. https://doi.org/10.1016/j.bcp.2018.01.017
张源洲, 席雨鑫, 温馨, 等. 硫化氢对衰老缺血心肌细胞保护作用的研究进展[J]. 基础医学与临床, 2019, 39(2): 252-255.
李敏霞, 陈亚红. 硫化氢在肺血管重塑中的调节机制及信号通路[J]. 生理科学进展, 2018, 49(1): 74-78.
Engelmann, B. and Massberg, S. (2013) Thrombosis as an Intravascular Effector of Innate Immunity. Nature Reviews Immunology, 13, 34-45. https://doi.org/10.1038/nri3345
Kazmi, R.S., Boyce, S. and Lwaleed, B.A. (2015) Homeostasis of Hemostasis: The Role of Endothelium. Seminars in Thrombosis and Hemostasis, 41, 549-555. https://doi.org/10.1055/s-0035-1556586
Yau, J.W., Teoh, H. and Verma, S. (2015) Endothelial Cell Control of Thrombosis. BMC Cardiovascular Disorders, 15, 130. https://doi.org/10.1186/s12872-015-0124-z
Andre, P., Denis, C.V., Ware, J., Saffaripour, S., Hynes, R.O., Ruggeri, Z.M. and Wagner, D.D. (2000) Platelets Adhere to and Translocate on von Willebrand Factor Presented by Endothelium in Stimulated Veins. Blood, 96, 3322-3328. https://doi.org/10.1182/blood.V96.10.3322
Weibel, E.R. (2012) Fifty Years of Weibel-Palade Bodies: The Discovery and Early History of an Enigmatic Organelle of Endothelial Cells. Journal of Thrombosis and Haemostasis, 10, 979-984. https://doi.org/10.1111/j.1538-7836.2012.04718.x
Rondaij, M.G., Bierings, R., Kragt, A., van Mourik, J.A. and Voorberg, J. (2006) Dynamics and Plasticity of Weibel-Palade Bodies in Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 1002-1007. https://doi.org/10.1161/01.ATV.0000209501.56852.6c
Denis, C.V., Andre, P., Saffaripour, S. and Wagner, D.D. (2001) Defect in Regulated Secretion of P-Selectin Affects Leukocyte Recruitment in von Willebrand Factor-Deficient Mice. Proceedings of the National Academy of Sciences of the United States of America, 98, 4072-4077. https://doi.org/10.1073/pnas.061307098
Utgaard, J.O., Jahnsen, F.L., Bakka, A., Brandtzaeg, P. and Haraldsen, G. (1998) Rapid Secretion of Prestored Interleukin 8 from Weibel-Palade Bodies of Microvascular Endothelial Cells. Journal of Experimental Medicine, 188, 1751-1756.
Pober, J.S. and Sessa, W.C. (2007) Evolving Functions of Endothelial Cells in Inflammation. Nature Reviews Immunology, 7, 803-815. https://doi.org/10.1038/nri2171
Alitalo, K. (2011) The Lymphatic Vasculature in Disease. Nature Medicine, 17, 1371-1380. https://doi.org/10.1038/nm.2545
Planas-Paz, L., Strilic, B., Goedecke, A., Breier, G., Fassler, R. and Lammert, E. (2012) Mechanoinduction of Lymph Vessel Expansion. The EMBO Journal, 31, 788-804. https://doi.org/10.1038/emboj.2011.456
Semenza, G.L. (2003) Targeting HIF-1 for Cancer Therapy. Nature Reviews Cancer, 3, 721-732. https://doi.org/10.1038/nrc1187
Potente, M., Gerhardt, H. and Carmeliet, P. (2011) Basic and Therapeutic Aspects of Angiogenesis. Cell, 146, 873-887. https://doi.org/10.1016/j.cell.2011.08.039
Risau, W. (1995) Differentiation of Endothelium. The FASEB Journal, 9, 926-933. https://doi.org/10.1096/fasebj.9.10.7615161
Vestweber, D. (2012) Relevance of Endothelial Junctions in Leukocyte Extravasation and Vascular Permeability. Annals of the New York Academy of Sciences, 1257, 184-192. https://doi.org/10.1111/j.1749-6632.2012.06558.x
Zhao, W., Zhang, J., Lu, Y. and Wang, R. (2001) The Vasorelaxant Effect of H(2)S as a Novel Endogenous Gaseous K(ATP) Channel Opener. The EMBO Journal, 20, 6008-6016. https://doi.org/10.1093/emboj/20.21.6008
Zanardo, R.C., Brancaleone, V., Distrutti, E., Fiorucci, S., Cirino, G. and Wallace, J.L. (2006) Hydrogen Sulfide Is an Endogenous Modulator of Leukocyte-Mediated Inflammation. The FASEB Journal, 20, 2118-2120. https://doi.org/10.1096/fj.06-6270fje
Grambow, E., Mueller-Graf, F., Delyagina, E., Frank, M., Kuhla, A. and Vollmar, B. (2013) Effect of the Hydrogen Sulfide Donor GYY4137 on Platelet Activation and Microvascular Thrombus Formation in Mice. Platelets, 25, 166-174. https://doi.org/10.3109/09537104.2013.786823
Kram, L., Grambow, E., Mueller-Graf, F., Sorg, H. and Vollmar, B. (2013) The Anti-Thrombotic Effect of Hydrogen Sulfide Is Partly Mediated by an Upregulation of Nitric Oxide Synthases. Thrombosis Research, 132, e112-e117. https://doi.org/10.1016/j.thromres.2013.07.010
Zagli, G., Patacchini, R., Trevisani, M., Abbate, R., Cinotti, S., Gensini, G.F., Masotti, G. and Geppetti, P. (2007) Hydrogen Sulfide Inhibits Human Platelet Aggregation. European Journal of Pharmacology, 559, 65-68. https://doi.org/10.1016/j.ejphar.2006.12.011
Hosoki, R., Matsuki, N. and Kimura, H. (1997) The Possible Role of Hydrogen Sulfide as an Endogenous Smooth Muscle Relaxant in Synergy with Nitric Oxide. Biochemical and Biophysical Research Communications, 237, 527-531. https://doi.org/10.1006/bbrc.1997.6878
Austin, S.K. (2009) Haemostasis. Medicine, 37, 133-136. https://doi.org/10.1016/j.mpmed.2009.01.015
Nishikawa, H., Hayashi, H., Kubo, S., Tsubota-Matsunami, M., Sekiguchi, F. and Kawabata, A. (2013) Inhibition by Hydrogen Sulfide of Rabbit Platelet Aggregation and Calcium Mobilization. Biological and Pharmaceutical Bulletin, 36, 1278-1282. https://doi.org/10.1248/bpb.b13-00018
Morel, A., Malinowska, J. and Olas, B. (2012) Antioxidative Properties of Hydrogen Sulfide May Involve in Its Antiadhesive Action on Blood Platelets. Clinical Biochemistry, 45, 1678-1682. https://doi.org/10.1016/j.clinbiochem.2012.08.025
Morel, A., Malinowska, J. and Olas, B. (2014) Hydrogen Sulfide Changes Adhesive Properties of Fibrinogen and Collagen in Vitro. Platelets, 25, 147-149. https://doi.org/10.3109/09537104.2012.737490