为理解γδT淋巴细胞在乳腺癌微环境中的作用机制,本文检索了近几年来发表的有关文献,综述了γδT淋巴细胞在乳腺癌细胞水平、小鼠模型体内水平,以及在肿瘤治疗方面的临床研究,论证了γδT淋巴细胞具有抗肿瘤和促肿瘤的双重活性与其亚型的相关性,为乳腺癌的有效治疗提供理论和实验依据。 In order to understand the role of γδT lymphocytes in the microenvironment of breast cancer, this article retrieved articles on γδT lymphocytes published in domestic and foreign journals over the past years, and summarized the role of γδT lymphocytes in breast cancer cells, in vivo on mouse models, and clinical studies on tumor treatment. We have demonstrated that γδT lymphocytes have dual anti-tumor and tumor-promoting activities related to their subtypes, providing theoretical and experimental basis for effective treatment of breast cancer.
乳腺癌,肿瘤微环境,γδT淋巴细胞,免疫治疗, Breast Cancer
Tumor Microenvironment
γδT Lymphocytes
Immunotherapy
摘要
In order to understand the role of γδT lymphocytes in the microenvironment of breast cancer, this article retrieved articles on γδT lymphocytes published in domestic and foreign journals over the past years, and summarized the role of γδT lymphocytes in breast cancer cells, in vivo on mouse models, and clinical studies on tumor treatment. We have demonstrated that γδT lymphocytes have dual anti-tumor and tumor-promoting activities related to their subtypes, providing theoretical and experimental basis for effective treatment of breast cancer.
杨向荣,张艳丽,丁 勇,马春玲. 乳腺癌微环境中γδT淋巴细胞的研究进展Research Progress of γδT Lymphocytes in Breast Cancer Microenvironment[J]. 临床医学进展, 2021, 11(07): 3138-3144. https://doi.org/10.12677/ACM.2021.117455
参考文献References
Bray, F., Ferlay, J., Soerjiomataram, I., Siegel, R.L., Torre, L.A. and Jemal, A. (2018) Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancer in 185 Countries. CA: A Cancer Journal for Clinicians, 68, 394-424. https://doi.org/10.3322/caac.21492
Roxburgh, C.S. and McMillan, D.C. (2012) The Role of the in Situ Local Inflammatory Response in Predicting Recurrence and Survival in Patients with Primary Operable Colorectal Cancer. Cancer Treatment Reviews, 38, 451-466. https://doi.org/10.1016/j.ctrv.2011.09.001
Hanahan, D. and Weinberg, R.A. (2011) Hallmarks of Cancer: The Next Generation. Cell, 144, 646-674. https://doi.org/10.1016/j.cell.2011.02.013
Davey, M.S., Willcox, C.R., Joyce, S.P., Ladell, K., Kasatskaya, S.A., McLaren, J.E., et al. (2017) Clonal Selection in the Human Vδ1 T Cell Repertoire Indicates γδ TCR-Dependent Adaptive Immune Surveillance. Nature Communications, 8, Article No. 14760. https://doi.org/10.1038/ncomms14760
Davey, M.S., Willcox, C.R., Hunter, S., Kasatskaya, S.A., Remmerswaal, E.B.M., Salim, M., et al. (2018) The Human Vδ2+ T-Cell Compartment Comprises Distinct Innate-Like Vγ9+ and Adaptive Vγ9− Subsets. Nature Communications, 9, Article No. 1760. https://doi.org/10.1038/s41467-018-04076-0
Davey, M.S., Willcox, C.R., Baker, A.T., Hunter, S. and Willcox, B.E. (2018) Recasting Human Vδ1 Lymphocytes in an Adaptive Role. Trends in Immunology, 39, 446-459. https://doi.org/10.1016/j.it.2018.03.003
Lafont, V., Sanchez, F., Laprevotte, E., Michaud, H.-A., Gros, L., Eliaou, J.-F., et al. (2014) Plasticity of Gammadelta T Cells: Impact on the Antitumor Response. Frontiers in Immunology, 5, Article No. 622. https://doi.org/10.3389/fimmu.2014.00622
Wu, Y.L., Ding, Y.P., Tanaka, Y., Shen, L.W., Wei, C.H., Minato, N., et al. (2014) γδ T Cells and Their Potential for Immunotherapy. International Journal of Biological Sciences, 10, 119-135. https://doi.org/10.7150/ijbs.7823
Ferreira, L.M. (2013) Gammadelta T Cells: Innately Adaptive Immune Cells. International Reviews of Immunology, 32, 223-248. https://doi.org/10.3109/08830185.2013.783831
Born, W.K., Reardon, C.L. and O’Brien, R.L. (2006) The Function of γδ T Cells in Innate Immunity. Current Opinion in Immunology, 18, 31-38. https://doi.org/10.1016/j.coi.2005.11.007
Dokouhaki, P., Han, M., Joe, B., Li, M., Johnston, M.R., Tsao, M.-S., et al. (2010) Adoptive Immunotherapy of Cancer Using ex Vivo Expanded Human γδ T Cells: A New Approach. Cancer Letters, 297, 126-136. https://doi.org/10.1016/j.canlet.2010.05.005
Coffelt, S.B., Kersten, K., Doornebal, C.W., Weiden, J., Vrijland, K., Hau, C.-S., et al. (2015) IL-17-Producing γδ T Cells and Neutrophils Conspire to Promote Breast Cancer Metastasis. Nature, 522, 345-348. https://doi.org/10.1038/nature14282
Bank, I., Book, M., Huszar, M., Baram, Y., Schnirer, I. and Brenner, H. (1993) Vδ2+ γδ T Lymphocytes Are Cytotoxic to the MCF 7 Breast Carcinoma Cell Line and Can Be Detected among the T Cells That Infiltrate Breast Tumors. Clinical Immunology & Immunopathology, 67, 17-24. https://doi.org/10.1006/clin.1993.1040
Guo, B.L., Liu, Z., Aldrich, W.A. and Lopez, R.D. (2005) Innate Anti-Breast Cancer Immunity of Apoptosis-Resistant Human γδ-T Cells. Breast Cancer Research & Treatment, 93, 69-175. https://doi.org/10.1007/s10549-005-4792-8
Beck, B.H., Kim, H.G., Kim, H., Samuel, S., Liu, Z., Shrestha, R., et al. (2010) Adoptively Transferred ex Vivo expanded γδ-T Cells Mediate in Vivo Antitumor Activity in Preclinical Mouse Models of Breast Cancer. Breast Cancer Research & Treatment, 122, 135-144. https://doi.org/10.1007/s10549-009-0527-6
Aggarwal, R., Lu, J., Kanji, S., Das, M., Joseph, M., Lustberg, M.B., et al. (2013) Human Vγ2Vδ2 T Cells Limit Breast Cancer Growth by Modulating Cell Survival-, Apoptosis-Related Molecules and Microenvironment in Tumors. International Journal of Cancer, 133, 2133-2144. https://doi.org/10.1002/ijc.28217
Willcox, C.R., Pitard, V., Netzer, S., Couzi, L., Salim, M., Silberzahn, T., et al. (2012) Cytomegalovirus and Tumor Stress Surveillance by Binding of a Human γδ T Cell Antigen Receptor to Endothelial Protein C Receptor. Nature Immunology, 13, 872-879. https://doi.org/10.1038/ni.2394
Gaafar, A., Aljurf, M.D., Al-Sulaiman, A., Iqniebi, A., Manogaran, P.S., Mohamed, G.E.H., et al. (2009) Defective γδ T-Cell Function and Granzyme B Gene Polymorphism in a Cohort of Newly Diagnosed Breast Cancer Patients. Experimental Hematology, 37, 838-848. https://doi.org/10.1016/j.exphem.2009.04.003
Sugie, T., Murata-Hirai, K., Iwasaki, M., Morita, C.T., Li, W., Okamura, H., et al. (2013) Zoledronic Acid-Induced Expansion of γδ T Cells from Early-Stage Breast Cancer Patients: Effect of IL-18 on Helper NK Cells. Cancer Immunology Immunotherapy, 62, 677-687. https://doi.org/10.1007/s00262-012-1368-4
Ma, C., Zhang, Q., Ye, J., Wang, F., Zhang, Y., Wevers, E., et al. (2012) Tumor-Infiltrating γδ T Lymphocytes Predict Clinical Outcome in Human Breast Cancer. Journal of Immunology, 189, 5029-5036. https://doi.org/10.4049/jimmunol.1201892
Ye, J., Ma, C., Hsueh, E.C., Eickhoff, C.S., Zhang, Y., Varvares, M.A., et al. (2013) Tumor-Derived γδ Regulatory T Cells Suppress Innate and Adaptive Immunity through Theinduction of Immunosenescence. Journal of Immunology, 190, 2403-2414. https://doi.org/10.4049/jimmunol.1202369
Hidalgo, J.V., Bronsert, P., Orlowska-Volk, M., Díaz, L.B., Stickeler, E., Werner, M., et al. (2014) Histological Analysis of γδ T Lymphocytes Infiltrating Human Triple-Negative Breast Carcinomas. Frontiers in Immunology, 5, Article No. 632. https://doi.org/10.3389/fimmu.2014.00632
Peng, G., Wang, H.Y., Peng, W., Kiniwa, Y., Seo, K.H., Wang, R.-F., et al. (2007) Tumor-Infiltrating γδ T Cells Suppress T and Dendritic Cell Function via Mechanisms Controlled by a Unique Toll-Like Receptor Signaling Pathway. Immunity, 27, 334-348. https://doi.org/10.1016/j.immuni.2007.05.020
Hamilton, E., Clay, T.M. and Blackwell, K.L. (2011) New Perspectives on Zoledronic Acid in Breast Cancer: Potential Augmentation of Anticancer Immune Response. Cancer Investigation, 29, 533-541. https://doi.org/10.3109/07357907.2011.605413
Benzaid, I., Monkkonen, H., Stresing, V., Bonnelye, E., Green, J., Mönkkönen, J., et al. (2011) High Phosphoantigen Levels in Bisphosphonate-Treated Human Breast Tumors Promote Vγ9Vδ2 T-Cell Chemotaxis and Cytotoxicity in Vivo. Cancer Research, 71, 4562-4572. https://doi.org/10.1158/0008-5472.CAN-10-3862
Zhao, Y., Niu, C. and Cui, J. (2018) Gamma-Delta (γδ) T Cells: Friend or Foe in Cancer Development. Journal of Translational Medicine, 16, Article No. 3. https://doi.org/10.1186/s12967-017-1378-2
Zysk, A., DeNichilo, M.O., Panagopoulos, V., Zinonos, I., Liapis, V., Hay, S., et al. (2017) Adoptive Transfer of ex Vivo Expanded Vγ9Vδ2 T Cells in Combination with Zoledronic Acid Inhibits Cancer Growth and Limits Osteolysis in a Murine Model of Osteolytic Breast Cancer. Cancer Letters, 86, 141-150. https://doi.org/10.1016/j.canlet.2016.11.013
Capietto, A.H., Martinet, L. and Fournie, J.J. (2011) Stimulated Gammadelta T Cells Increase the in Vivo Efficacy of Trastuzumab in HER2+ Breast Cancer. Journal of Immunology, 187, 1031-1038. https://doi.org/10.4049/jimmunol.1100681