随着智能化弹药进一步向精准化、小型化发展,硅基PIN光电探测器由于具有高响应度、短响应时间、小体积、低功耗、强抗干扰等优点而广泛应用于激光制导等领域。然而,暗电流作为制约PIN探测器性能的重要参数一直备受关注,减小暗电流可以有效改善探测器的灵敏度,提高其信噪比。因此,主要介绍了PIN探测器暗电流的产生机制,重点探讨了优化探测器暗电流的方法,主要从钝化工艺、掺杂技术、I层厚度、温度、电场隔离结构、pn结面积等方面综述了暗电流的研究进展,为PIN探测器在智能弹药导航领域的应用奠定了坚实的理论基础。 With the further development of precision and miniaturization of intelligent ammunition, silicon substrate positive-intrinsic-negative (PIN) photodetectors were widely used in laser guidance due to their high responsiveness, short response time, small size, low power consumption, strong anti-jamming. Nevertheless, dark current was paid much attention as an important parameter that restricts the performance of PIN detector. Detector sensitivity and signal-to-noise ratio can be effectively enhanced by reducing the dark current. Therefore, the mechanism of dark current of the PIN detector was introduced in this paper. At the same time, the method of optimizing the dark current of the detector was emphatically discussed. In addition, the research progress of dark current regulation was summarized from the aspects of passivation technology, doping technology, I layer thickness, temperature, electric field separation, pn junction area, which lays a solid theoretical foundation for the application of the PIN detector in the field of intelligent ammunition navigation.
PIN,暗电流,激光制导,光电探测器, PIN
Dark Current
Laser Guidance
Photoelectric Detector
摘要
With the further development of precision and miniaturization of intelligent ammunition, silicon substrate positive-intrinsic-negative (PIN) photodetectors were widely used in laser guidance due to their high responsiveness, short response time, small size, low power consumption, strong anti-jamming. Nevertheless, dark current was paid much attention as an important parameter that restricts the performance of PIN detector. Detector sensitivity and signal-to-noise ratio can be effectively enhanced by reducing the dark current. Therefore, the mechanism of dark current of the PIN detector was introduced in this paper. At the same time, the method of optimizing the dark current of the detector was emphatically discussed. In addition, the research progress of dark current regulation was summarized from the aspects of passivation technology, doping technology, I layer thickness, temperature, electric field separation, pn junction area, which lays a solid theoretical foundation for the application of the PIN detector in the field of intelligent ammunition navigation.
Keywords:PIN, Dark Current, Laser Guidance, Photoelectric Detector
王海建,杨翠侠,李 波,房建峰,李有池,高加林,鲁争艳,王浚宇,王 泉. 硅基PIN红外探测器暗电流的研究进展 Research Progress in Dark Current Regulation of Silicon Based PIN Infrared Detector[J]. 传感器技术与应用, 2021, 09(03): 125-133. https://doi.org/10.12677/JSTA.2021.93016
参考文献References
Rogalski, A. (2010) Infrared Detectors. CRC Press, Boca Raton, 2-3. https://doi.org/10.1201/b10319
赵正平. 超宽禁带半导体Ga2O3微电子学研究进展[J]. 半导体技术, 2019, 44(1): 8-14.
庄东炜, 韩晓川, 李雨轩, 等. 硅基光电子集成光控相控阵的研究进展[J]. 激光与光电子学进展, 2018, 55(5): 050001.
林鑫. 基于四象限探测器的激光束二维扫描跟踪系统的研究[D]: [硕士学位论文]. 南京: 南京航空航天大学, 2018.
李龙, 孙浩, 朱西安. 碲镉汞长波探测器暗电流仿真分析[J]. 红外技术, 2014, 36(1): 73-78.
许娇. 红外探测器暗电流成分分析和机理研究[D]: [硕士学位论文]. 上海: 中国科学院上海技术物理研究所, 2016.
施志贵. 降低高阻硅探测器漏电流的方法研究[D]: [硕士学位论文]. 北京: 中国工程物理研究院, 2000.
祝威. 近红外增强型硅双四象限光电探测器研究[D]: [硕士学位论文]. 成都: 电子科技大学, 2020.
Chen, H., Verheyen, P., De Heyn, P., Lepage, G., De Coster, J., Balakrishnan, S., Absil, P., Roelkens, G. and Van Campenhout, J. (2016) Dark Current Analysis in High-Speed Germanium p-i-n Waveguide Photodetectors. Journal of Applied Physics, 119, Article ID: 213105. https://doi.org/10.1063/1.4953147
Dong, Y., Wang, W., Lei, D., Gong, X., Zhou, Q., Lee, S.Y., Loke, W.K., Yoon, S.-F., Tok, E.S., Liang, G. and Yeo, Y.-C. (2015) Suppression of Dark Current in Germanium-Tin on Silicon p-i-n Photodiode by a Silicon Surface Passivation Technique. Optics Express, 23, 18611. https://doi.org/10.1364/OE.23.018611
Barada, K.N., Mool, C.G. and Kurt, W.K. (2007) Spontaneous For-mation of Nanospiked Microstructures in Germanium by Femtosecond Laser Irradiation. Nanotechnology, 18, Article ID: 195302. https://doi.org/10.1088/0957-4484/18/19/195302
进晓荣, 吴强, 黄松, 等. 飞秒激光过饱和掺杂硅基光电探测器研究进展[J]. 激光与光电子学进展, 2020, 57(11): 393-405.
王巍, 白晨旭, 冯其, 等. 硅基PIN光电探测器结构参数对其性能的影响[J]. 半导体光电, 2013, 3(34): 379-382.
赵真典, 陈路, 傅祥良, 等. 替代衬底上的碲镉汞长波器件暗电流机理[J]. 红外与毫米波学报, 2017, 2(36): 187-190.
夏少杰, 陈俊. p-i-n InP/InGaAs光电探测器的电流及电容特性研究[J]. 红外, 2021, 1(42): 1-5.
覃钢, 吉凤强, 夏丽昆, 等. 碲镉汞高工作温度红外探测器[J]. 红外与激光工程, 2020, 50(4): 1-11.
张小倩, 王亮. 长波碲镉汞探测器工作温度对输出图像的影响[J]. 红外, 2019, 9(40): 12-17.
Matukas, J., Palenskia, V., Pralgauskaite, S., et al. (2006) Photosensitivity and Noise Characteristic Investigation of Ultrafast InGaAs/InP Avalanche Photodetectors. 2006 Interna-tional Conference on Microwaves, Radar & Wireless Communications, Krakow, 22-24 May 2006, 173-176. https://doi.org/10.1109/MIKON.2006.4345132
李欣, 王淑芬, 毛京湘, 等. HgCdTe环孔p-n结光伏探测器暗电流机制[J]. 红外与激光工程, 2007, 36(z1): 195-198.
白宏刚, 张建奇. 量子点红外探测器暗电流及噪声特性研究[D]: [博士学位论文]. 西安: 西安电子科技大学, 2014.
高诗佳, 王鑫, 张育林, 等. 光敏层厚度与退火温度调控对聚3-已基噻吩光电探测器性能的影响[J]. 高分子学报, 2020, 4(51): 338-345.
盛丽艳, 韩德俊, 张秀荣, 等. 带保护环结构的条形X光阵列探测器[J]. 半导体学报, 2003(2): 198-201.
丰亚洁, 何晓颖, 刘巧莉, 等. Si基PIN光电探测器电场隔离结构对暗电流的影响[J]. 半导体光电, 2017, 38(6): 802-805.
Zheng, Z.Q., Chen, P.F., Lu, J.T., et al. (2020) Self-Assembly In2Se3/SnSe2 Heterostructure Array with Suppressed Dark Current and Enhanced Photosensitivity for Weak Signal. Science China Materials, 63, 1560-1580. https://doi.org/10.1007/s40843-020-1354-2
Goushcha, I., Tabbert, B. and Goushcha, A.O. (2007) Optical and Electrical Crosstalk in PIN Photodiode Array for Medical Imaging Applications. IEEE Nuclear Science Symposium Con-ference Record, Honolulu, 26 October-3 November 2007, 4349-4356. https://doi.org/10.1109/NSSMIC.2007.4437077
张可锋, 唐恒敬, 李涛, 等. InGaAs探测器性能与结面积和周长的关系研究[J]. 光电子激光, 2009, 6(20): 714-716.
王巍, 武逶, 白晨旭, 等. 硅PIN光电探测器阵列的串扰分析[J]. 半导体光电, 2013, 34(1): 12-15.
郝国强, 张永刚, 刘天东, 等. InGaAs PIN光电探测器的暗电流特性研究[J]. 半导体光电, 2007, 25(5): 341-344.
张君和. 提高光电二极管光/暗电流比值的途径[J]. 半导体光电, 1991, 12(3): 284-288.