大气中的氮沉降会导致土壤中N积累量增加,直接影响土壤碳氮循环。植物根际分泌物能够深刻地改变土壤微生物群落并影响其N的转化。探究根际分泌物对氮沉降的响应以及在土壤碳氮循环中的作用机制成为植物地下碳氮循环的关注重点。本文主要从根际分泌物的C输入、化学组分、化学计量比和根际分泌物–根际微生物机制几个方面,对根际分泌物和根际微生物的研究动态进行综述,重点论述目前氮沉降背景下根系分泌物的重点研究方向与根际微生物的相互作用等方面的研究情况与进展,并对当前根际分泌物研究中存在的问题进行探讨,以及展望未来的发展趋势。 Nitrogen deposition in the atmosphere will increase the amount of N accumulation in the soil, which directly affects the soil carbon and nitrogen cycle. Plant root exudates can profoundly change the soil microbial community and affect its N transformation. Exploring the response of root exudates to nitrogen deposition and the mechanism of action in the soil carbon and nitrogen cycle has become the focus of the plant’s underground carbon and nitrogen cycle. This article mainly focuses on the research trends of root exudates and rhizosphere microorganisms in rhizosphere ecology from the aspects of C input, chemical composition, stoichiometric ratio and root exudates-rhizosphere microbe mechanism. This review focuses on the current research status and progress on the interaction between root exudates and rhizosphere microorganisms under the background of nitrogen deposition. It also discusses the existing problems in the current research on root exudates, and looks forward to the future development trend.
Research Advances of Root Exudates in Response to Nitrogen Deposition
Yulei Fu, Yajuan Xing*
College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin Heilongjiang
Received: Apr. 19th, 2021; accepted: May 20th, 2021; published: May 27th, 2021
ABSTRACT
Nitrogen deposition in the atmosphere will increase the amount of N accumulation in the soil, which directly affects the soil carbon and nitrogen cycle. Plant root exudates can profoundly change the soil microbial community and affect its N transformation. Exploring the response of root exudates to nitrogen deposition and the mechanism of action in the soil carbon and nitrogen cycle has become the focus of the plant’s underground carbon and nitrogen cycle. This article mainly focuses on the research trends of root exudates and rhizosphere microorganisms in rhizosphere ecology from the aspects of C input, chemical composition, stoichiometric ratio and root exudates-rhizosphere microbe mechanism. This review focuses on the current research status and progress on the interaction between root exudates and rhizosphere microorganisms under the background of nitrogen deposition. It also discusses the existing problems in the current research on root exudates, and looks forward to the future development trend.
Keywords:Root Exudates, Nitrogen Deposition, Underground Carbon and Nitrogen Cycle
傅玉蕾,邢亚娟. 根际分泌物对氮沉降响应的研究进展Research Advances of Root Exudates in Response to Nitrogen Deposition[J]. 世界生态学, 2021, 10(02): 289-297. https://doi.org/10.12677/IJE.2021.102034
参考文献References
Lebauer, D.S. and Treseder, K.K. (2006) Nitrogen Limitation of Terrestrial Net Primary Production: Global Patterns from Field Studies with Nitrogen Fertilization. Proceedings of the AGU Fall Meeting, San Francisco, California, December 2006, B24B-05.
Kopáek, J., Cosby, B.J., Evans, C.D., et al. (2013) Nitrogen, Organic Carbon and Sulphur Cycling in Terrestrial Ecosystems: Linking Nitrogen Saturation to Carbon Limitation of Soil Microbial Processes. Biogeochemistry, 115, 33-51. https://doi.org/10.1007/s10533-013-9892-7
Galloway, J.N., Townsend, A.R., Erisman, J.W., et al. (2008) Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions. Science, 320, 889-892. https://doi.org/10.1126/science.1136674
Zhou, J., Jiang, X., Wei, D., et al. (2017) Consistent Effects of Ni-trogen Fertilization on Soil Bacterial Communities in Black Soils for Two Crop Seasons in China. Scientific Reports, 7, Article No. 3267. https://doi.org/10.1038/s41598-017-03539-6
Hiltner, L. (1904) Uber neuer Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriologie unter besonderer Berücksichtigung der Gründüngung und Brache. Soil Biology and Biochemistry, 32, 1405-1417.
Wang, Q., Jiang, X., Guan, D., et al. (2017) Long-Term Fertilization Changes Bacterial Diversity and Bacterial Communities in the Maize Rhizosphere of Chinese Mollisols. Applied Soil Ecology, 125, 88-96. https://doi.org/10.1016/j.apsoil.2017.12.007
Jones, D.L., Nguyen, C. and Finlay, R.D. (2009) Carbon Flow in the Rhizosphere: Carbon Trading at the Soil-Root Interface. Plant and Soil, 321, 5-33. https://doi.org/10.1007/s11104-009-9925-0
Herman, D.J., Johnson, K.K., Jaeger, C.H., et al. (2006) Root Influence on Nitrogen Mineralization and Nitrification in Rhizosphere Soil. Soil Science Society of America Journal, 70, 60-66. https://doi.org/10.2136/sssaj2005.0113
Finzi, A.C., Abramoff, R.Z., Spiller, K.S., et al. (2015) Rhizosphere Processes Are Quantitatively Important Components of Terrestrial Carbon and Nutrient Cycles. Global Change Biology, 21, 2082-2094. https://doi.org/10.1111/gcb.12816
Hristov, A.N., Ott, T., Tricarico, J., et al. (2013) Mitigation of Methane and Nitrous Oxide Emissions from Animal Operations: III. A Review of Animal Management Mitigation Options. Journal of Animal Science, 91, 5095-5113. https://doi.org/10.2527/jas.2013-6585
Thiessen, S., Gleixner, G., Wutzler, T., et al. (2013) Both Priming and Temperature Sensitivity of Soil Organic Matter Decomposition Depend on Microbial Biomass—An Incubation Study. Soil Biology & Biochemistry, 57, 739-748. https://doi.org/10.1016/j.soilbio.2012.10.029
Groleau-Renaud, V., Plantureux, S. and Guckert, A. (1998) In-fluence of Plant Morphology on Root Exudation of Maize Subjected to Mechanical Impedance in Hydroponic Conditions. Plant & Soil, 201, 231-239. https://doi.org/10.1023/A:1004316416034
He, W., et al. (2017) Effects of Nitrogen Enrichment on Root Exudative Carbon Inputs in Sibiraea angustata Shrubbery at the Eastern Fringe of Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology, 41, 610-621. https://doi.org/10.17521/cjpe.2016.0329
Aitkenhead-Peterson, J.A. and Kalbitz, K. (2010) Short-Term Re-sponse on the Quantity and Quality of Rhizo-Deposited Carbon from Norway Spruce Exposed to Low and High N In-puts. Journal of Plant Nutrition and Soil Science, 168, 687-693. https://doi.org/10.1002/jpln.200420468
Phillips, R.P., Finzi, A.C. and Bernhardt, E.S. (2011) Enhanced Root Exudation Induces Microbial Feedbacks to N Cycling in a Pine Forest under Long-Term CO2 Fumigation. Ecology Letters, 14, 187-194. https://doi.org/10.1111/j.1461-0248.2010.01570.x
Fransson, P.M.A. and Johansson, E.M. (2010) Elevated CO2 and Nitrogen Influence Exudation of Soluble Organic Compounds by Ectomycorrhizal Root Systems. FEMS Mi-crobiology Ecology, 71, 186-196. https://doi.org/10.1111/j.1574-6941.2009.00795.x
Uselman, S.M., Qualls, R.G. and Thomas, R.B. (2000) Effects of Increased Atmospheric CO2, Temperature, and Soil N Availability on Root Exudation of Dissolved Organic Carbon by a N-Fixing Tree (Robinia pseudoacacia L.). Plant & Soil, 222, 191-202. https://doi.org/10.1023/A:1004705416108
杨建华, 王芳, 张军辉, 等. 长期施氮与减水处理对红松和蒙古栎根际磷浓度的影响[J]. 生态学杂志, 2015(10): 2699-2704.
李德军, 莫江明, 方运霆, 等. 氮沉降对森林植物的影响[J]. 生态学报, 2003, 23(9): 1891-1900.
Hodge, A., Grayston, S.J. and Ord, B.G. (1996) A Novel Method for Soil Characterization and Quantification of Plant Root Exudates. Plant & Soil, 184, 97-104. https://doi.org/10.1007/BF00029278
Uselman, S.M., Qualls, R.G. and Thomas, R.B. (1999) A Test of a Po-tential Short Cut in the Nitrogen Cycle: The Role of Exudation of Symbiotically Fixed Nitrogen from the Roots of a N-Fixing Tree and the Effects of Increased Atmospheric CO2 and Temperature. Plant & Soil, 210, 21-32. https://doi.org/10.1023/A:1004619509878
Luo, Y.Q., Zhao, X.Y. and Li, M.X. (2012) Ecological Effect of Plant Root Exudates and Related Affecting Factors: A Review. The Journal of Applied Ecology, 23, 3496-3504.
肖娟. 夜间增温和施氮对两种川西亚高山针叶树幼苗根系分泌物的影响研究[D]: [博士学位论文]. 北京: 中国科学院大学, 2013.
Yin, H., Li, Y., Xiao, J., et al. (2013) Enhanced Root Exudation Stimulates Soil Nitrogen Transformations in a Subalpine Coniferous Forest under Experimental Warming. Global Change Biology, 19, 2158-2167. https://doi.org/10.1111/gcb.12161
涂书新, 吴佳. 植物根系分泌物研究方法评述[J]. 生态环境学报, 2010, 19(10): 2493-2500.
Zhalnina, K., Louie, K.B., Hao, Z., et al. (2018) Dynamic Root Exudate Chemistry and Microbial Substrate Preferences Drive Patterns in Rhizosphere Microbial Community Assembly. Nature Microbiology, 3, 470-480. https://doi.org/10.1038/s41564-018-0129-3
Keiluweit, M., Bougoure, J.J., Nico, P.S., et al. (2015) Mineral Protection of Soil Carbon Counteracted by Root Exudates. Nature Climate Change, 5, 588-595. https://doi.org/10.1038/nclimate2580
Yuan, Y., Zhao, W., Zhang, Z., et al. (2018) Impacts of Oxalic Acid and Glucose Additions on N Transformation in Microcosms via Artificial Roots. Soil Biology and Biochemistry, 121, 16-23. https://doi.org/10.1016/j.soilbio.2018.03.002
李春格, 李晓鸣, 王敬国. 大豆连作对土体和根际微生物群落功能的影响[J]. 生态学报, 2006(4): 1144-1150.
Shi, S., Condron, L., Larsen, S., et al. (2011) In Situ Sampling of Low Molecular Weight Organic Anions from Rhizosphere of Radiata Pine (Pinus radiata) Grown in a Rhizotron System. Environmental & Experimental Botany, 70, 131-142. https://doi.org/10.1016/j.envexpbot.2010.08.010
Phillips, R.P., Erlitz, Y., Bier, R., et al. (2008) New Ap-proach for Capturing Soluble Root Exudates in Forest Soils. Functional Ecology, 22, 990-999. https://doi.org/10.1111/j.1365-2435.2008.01495.x
Cleveland, C.C. and Liptzin, D. (2007) C:N:P Stoichiom-etry in Soil: Is There a “Redfield Ratio” for the Microbial Biomass? Biogeochemistry, 85, 235-252. https://doi.org/10.1007/s10533-007-9132-0
Kuzyakov, Y. and Cheng, W. (2001) Photosynthesis Controls of Rhizosphere Respiration and Organic Matter Decomposition. Soil Biology & Biochemistry, 33, 1915-1925. https://doi.org/10.1016/S0038-0717(01)00117-1
Drake, J.E., Darby, B.A., Giasson, M.A., et al. (2013) Stoichiometry Constrains Microbial Response to Root Exudation—Insights from a Model and a Field Experiment in a Temperate Forest. Biogeosciences, 10, 821-838. https://doi.org/10.5194/bg-10-821-2013
Sullivan, B.W., et al. (2013) Evaluation of Mechanisms Controlling the Priming of Soil Carbon along a Substrate Age Gradient. Soil Biology and Biochemistry, 58, 293-301. https://doi.org/10.1016/j.soilbio.2012.12.007
Chen, R., Senbayram, M., Blagodatsky, S., et al. (2014) Soil C and N Availability Determine the Priming Effect: Microbial N Mining and Stoichiometric Decomposition Theories. Global Change Biology, 20, 2356-2367. https://doi.org/10.1111/gcb.12475
Philippot, L., Raaijmakers, J.M., Lemanceau, P., et al. (2013) Going Back to the Roots: The Microbial Ecology of the Rhizosphere. Nature Reviews Microbiology, 11, 789-799. https://doi.org/10.1038/nrmicro3109
Ai, C., Liang, G., Sun, J., et al. (2015) Reduced Dependence of Rhizosphere Microbiome on Plant-Derived Carbon in 32-Year Long-Term Inorganic and Organic Fertilized Soils. Soil Biology & Biochemistry, 80, 70-78. https://doi.org/10.1016/j.soilbio.2014.09.028
Paungfoo-Lonhienne, C., Yeoh, Y.K., Kasinadhuni, N.R.P., et al. (2015) Nitrogen Fertilizer Dose Alters Fungal Communities in Sugarcane Soil and Rhizosphere. Scientific Reports, 5, Article No. 8678. https://doi.org/10.1038/srep08678
Darbyshire, J.F., et al. (1973) Bacteria and Protozoa in the Rhizosphere. Pesticide Science, 4, 349-360. https://doi.org/10.1002/ps.2780040312
罗明单, 文启凯, 潘伯荣. 几种固沙植物根际土壤微生物特性研究[J]. 应用与环境生物学报, 2002, 8(6): 618-622.
厉婉华, 等. 苏南丘陵区不同林分下根际根外土壤微生物区系及酶活性[J]. 生态学杂志, 1994(6): 11-14.
章家恩, 刘文高, 王伟胜. 南亚热带不同植被根际微生物数量与根际土壤养分状况[J]. 生态环境学报, 2002, 11(3): 279-282.
Treseder, K.K. (2010) Nitrogen Additions and Microbial Biomass: A Meta-Analysis of Ecosystem Studies. Ecology Letters, 11, 1111-1120. https://doi.org/10.1111/j.1461-0248.2008.01230.x
Yin, H., Xiao, J., Li, Y., et al. (2013) Warming Effects on Root Morphological and Physiological Traits: The Potential Consequences on Soil C Dynamics as Altered Root Exudation. Agricultural and Forest Meteorology, 180, 287-296. https://doi.org/10.1016/j.agrformet.2013.06.016
孙悦, 徐兴良, Kuzyakov, Y. 根际激发效应的发生机制及其生态重要性[J]. 植物生态学报, 2014, 38(1): 62-75.
Warren, C.R. (2016) Simultaneous Efflux and Uptake of Metabolites by Roots of Wheat. Plant & Soil, 406, 359-374. https://doi.org/10.1007/s11104-016-2892-3
Yin, H., Wheeler, E. and Phillips, R.P. (2014) Root-Induced Changes in Nutrient Cycling in Forests Depend on Exudation Rates. Soil Biology & Biochemistry, 78, 213-221. https://doi.org/10.1016/j.soilbio.2014.07.022
Cheng, W., Parton, W.J., Gonzalez-Meler, M.A., et al. (2013) Synthesis and Modeling Perspectives of Rhizosphere Priming. New Phytologist, 201, 31-44. https://doi.org/10.1111/nph.12440
Espinosa-Urgel, M. and Ramos, J.L. (2001) Expression of a Pseudomonas putida Aminotransferase Involved in Lysine Catabolism Is Induced in the Rhizosphere. Applied & Environmental Microbiology, 67, 5219-5224. https://doi.org/10.1128/AEM.67.11.5219-5224.2001
Zhu, B. and Cheng, W. (2011) Rhizosphere Priming Effect Increases the Temperature Sensitivity of Soil Organic Matter Decomposition. Global Change Biology, 17, 2172-2183. https://doi.org/10.1111/j.1365-2486.2010.02354.x
Hinsinger, P., Gobran, G.R., Gregory, P.J., et al. (2010) Rhizosphere Geometry and Heterogeneity Arising from Root-Mediated Physical and Chemical Processes. New Phytologist, 168, 293-303. https://doi.org/10.1111/j.1469-8137.2005.01512.x
Preece, C., et al. (2018) Thirsty Tree Roots Exude More Carbon. Tree Physiology, 38, 690-695. https://doi.org/10.1093/treephys/tpx163
Nakayama, M. and Tateno, R. (2018) Solar Radiation Strongly Influences the Quantity of Forest Tree Root Exudates. Trees, 32, 871-879. https://doi.org/10.1007/s00468-018-1685-0
Proctor, C. and He, Y. (2017) Quantifying Root Extracts and Exudates of Sedge and Shrub in Relation to Root Morphology. Soil Biology and Biochemistry, 114, 168-180. https://doi.org/10.1016/j.soilbio.2017.07.006
Guo, D., Mitchell, R.J., Withington, J.M., et al. (2008) Endogenous and Exogenous Controls of Root Life Span, Mortality and Nitrogen Flux in a Longleaf Pine Forest: Root Branch Order Predominates. Journal of Ecology, 96, 737-745. https://doi.org/10.1111/j.1365-2745.2008.01385.x
Mccormack, M.L., Dickie, I.A., Eissenstat, D.M., et al. (2015) Redefining Fine Roots Improves Understanding of Below-Ground Contributions to Terrestrial Biosphere Processes. New Phytologist, 207, 505-518. https://doi.org/10.1111/nph.13363