土壤碳库是陆地生态系统中最重要以及最大的碳库,在全球碳循环中的作用非常重要。添加外源有机碳可以影响土壤原有有机碳矿化,从而导致正激发效应或者负激发效应的产生,进而影响土壤的碳库。本文对激发效应的影响因素以及激发效应产生的机理进行了总结说明,并且为今后的研究内容以及方向提出了建议。 Soil carbon pool is the most important and largest carbon pool in terrestrial ecosystems, and it plays a very important role in the global carbon cycle. The addition of exogenous organic carbon can affect the mineralization of the original organic carbon in the soil, leading to positive or negative priming effect, which in turn affect the soil carbon pool. This article summarizes the influencing factors of the priming effect and the mechanism of the priming effect, and provides suggestions for the content and direction of future research.
Priming Effects of Soil Organic Carbon Decomposition: A Review
Yue Feng, Yajuan Xing*
College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin Heilongjiang
Received: Apr. 11th, 2021; accepted: May 12th, 2021; published: May 19th, 2021
ABSTRACT
Soil carbon pool is the most important and largest carbon pool in terrestrial ecosystems, and it plays a very important role in the global carbon cycle. The addition of exogenous organic carbon can affect the mineralization of the original organic carbon in the soil, leading to positive or negative priming effect, which in turn affect the soil carbon pool. This article summarizes the influencing factors of the priming effect and the mechanism of the priming effect, and provides suggestions for the content and direction of future research.
冯 玥,邢亚娟. 土壤有机碳分解激发效应的研究进展Priming Effects of Soil Organic Carbon Decomposition: A Review[J]. 世界生态学, 2021, 10(02): 236-242. https://doi.org/10.12677/IJE.2021.102026
参考文献References
陈春梅, 谢祖彬, 朱建国. 土壤有机碳激发效应研究进展[J]. 土壤, 2006(4): 359-365.
Lal, R. (2004) Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science, 304, 1623-1627. https://doi.org/10.1126/science.1097396
Zhang, Y., Zhao, Y.C., Shi, X.Z., Lu, X.X., Yu, D.S., Wang, H.J., et al. (2008) Variation of Soil Organic Carbon Estimates in Mountain Regions: A Case Study from Southwest China. Geoderma, 146, 449-456. https://doi.org/10.1016/j.geoderma.2008.06.015
Löhnis, F. (1926) Nitrogen Availability of Green Manures. Soil Science, 22, 253-290. https://doi.org/10.1097/00010694-192610000-00001
Bingeman, C.W., Varner, J.E. and Martin, W.P. (1953) The Effect of the Addition of Organic Materials on the Decomposition of an Organic Soil. Soil Science Society of America Journal, 17, 34-38. https://doi.org/10.2136/sssaj1953.03615995001700010008x
Kuzyakov, Y., Friedel, J.K. and Stahr, K. (2000) Review of Mechanisms and Quantification of Priming Effects. Soil Biology & Biochemistry, 32, 1485-1498. https://doi.org/10.1016/S0038-0717(00)00084-5
Wang, Q.K., Chen, L.C., Yang, Q.P., Sun, T. and Li, C.M. (2019) Different Effects of Single versus Repeated Additions of Glucose on the Soil Organic Carbon Turnover in a Temperate Forest Receiving Long-Term N Addition. Geoderma, 341, 59-67. https://doi.org/10.1016/j.geoderma.2019.01.032
李悦, 聂成, 邵蕊, 杜薇, 刘颖慧. 中国半干旱草原施氮梯度下的土壤激发效应[J]. 资源与生态学报: 英文版, 2019, 10(2): 147-154. https://doi.org/10.5814/j.issn.1674-764x.2019.02.005
Tian, P., Liu, S., Wang, Q., Sun, T. and Blagodatskaya, E. (2019) Organic N Deposition Favours Soil C Sequestration by Decreasing Priming Effect. Plant and Soil, 445, 439-451. https://doi.org/10.1007/s11104-019-04331-3
朱依凡, 孙兆林, 王清奎. 生物炭和氮添加对亚热带常绿阔叶林土壤有机碳分解与平衡的影响[J]. 生态学杂志, 2020, 39(9): 2851-2859.
Hartley, I.P., Hopkins, D.W., Sommerkorn, M. and Wookey, P.A. (2010) The Response of Organic Matter Mineralisation to Nutrient and Substrate Additions in Sub-Arctic Soils. Soil Biology & Biochemistry, 42, 92-100. https://doi.org/10.1016/j.soilbio.2009.10.004
马欣, 魏亮, 唐美玲, 徐福利, 祝贞科, 葛体达, 等. 长期不同施肥对稻田土壤有机碳矿化及激发效应的影响[J]. 环境科学, 2018, 39(12): 5680-5686.
李奕霏. 长期施肥处理下不同深层稻田土壤有机碳周转特征[D]: [硕士学位论文]. 长沙: 中南林业科技大学, 2019.
丘清燕, 杨钰, 王浩, 胡亚林. 易分解有机碳输入量对武夷山常绿阔叶林不同土层深度土壤激发效应的影响[J]. 生态学杂志, 2020, 39(4): 1153-1163.
Nottingham, A.T., Griffiths, H., Chamberlain, P.M., Stott, A.W. and Tanner, E.V.J. (2009) Soil Priming by Sugar and Leaf-Litter Substrates: A Link to Microbial Groups. Applied Soil Ecology, 42, 183-190. https://doi.org/10.1016/j.apsoil.2009.03.003
Zhang, Z., Wang, W., Qi, J., Zhang, H., Tao, F. and Zhang, R. (2019) Priming Effects of Soil Organic Matter Decomposition with Addition of Different Carbon Substrates. Journal of Soils and Sediments, 19, 1171-1178. https://doi.org/10.1007/s11368-018-2103-3
苗淑杰, 乔云发, 王文涛, 施雨涵. 添加玉米秸秆对黄棕壤有机质的激发效应[J]. 土壤, 2019, 51(3): 622-626.
陈立新, 李刚, 刘云超, 段文标, 孙双红, 李帆帆, 等. 外源有机物与温度耦合作用对红松阔叶混交林土壤有机碳的激发效应[J]. 林业科学研究, 2017, 30(5): 797-804.
李艾蒙, 李慧, 裴久渤, 谢柠桧, 刘雨薇, 汪景宽. 玉米秸秆施用对棕壤有机碳激发效应及温度敏感性的影响[J]. 农业环境科学学报, 2019, 38(12): 2788-2796.
Lenka, S., Trivedi, P., Singh, B., Pal Singh, B., Pendall, E., Bass, A., et al. (2019) Effect of Crop Residue Addition on Soil Organic Carbon Priming as Influenced by Temperature and Soil Properties. Geoderma, 347, 70-79. https://doi.org/10.1016/j.geoderma.2019.03.039
张雪雯. 干湿交替对若尔盖湿地枯落物和土壤有机质分解的影响[D]: [硕士学位论文]. 北京: 北京林业大学, 2014.
戴闪闪. 玉米秸秆添加对黑土有机碳矿化的影响[D]: [硕士学位论文]. 北京: 中国科学院大学(中国科学院东北地理与农业生态研究所), 2018.
Blagodatskaya, E.V., Blagodatsky, S.A., Anderson, T.H. and Kuzyakov, Y. (2007) Priming Effects in Chernozem Induced by Glucose and N in Relation to Microbial Growth Strategies. Applied Soil Ecology, 37, 95-105. https://doi.org/10.1016/j.apsoil.2007.05.002
Chen, R., Senbayram, M., Blagodatsky, S., Myachina, O., Dittert, K., Lin, X., et al. (2014) Soil C and N Availability Determine the Priming Effect: Microbial N Mining and Stoichiometric Decomposition Theories. Global Change Biology, 20, 2356-2367. https://doi.org/10.1111/gcb.12475
Tian, Q., Yang, X., Wang, X., Liao, C., Li, Q., Wang, M., et al. (2016) Microbial Community Mediated Response of Organic Carbon Mineralization to Labile Carbon and Nitrogen Addition in Topsoil and Subsoil. Biogeochemistry, 128, 125-139. https://doi.org/10.1007/s10533-016-0198-4
丘清燕, 姚快乐, 刘骏, 葛志强, 许文斌, 刘红晓, 等. 易分解有机碳对不同恢复年限森林土壤激发效应的影响[J]. 生态学报, 2019, 39(13): 4855-4864.
Fontaine, S. and Barot, S. (2005) Size and Functional Diversity of Microbe Populations Control Plant Persistence and Long-Term Soil Carbon Accumulation. Ecology Letters, 8, 1075-1087. https://doi.org/10.1111/j.1461-0248.2005.00813.x
Craine, J.M., Morrow, C. and Fierer, N. (2007) Microbial Nitrogen Limitation Increases Decomposition. Ecology, 88, 2105-2113. https://doi.org/10.1890/06-1847.1
Wang, W.J., Baldock, J.A., Dalal, R.C. and Moody, P.W. (2004) De-composition Dynamics of Plant Materials in Relation to Nitrogen Availability and Biochemistry Determined by NMR and Wet-Chemical Analysis. Soil Biology and Biochemistry, 36, 2045-2058. https://doi.org/10.1016/j.soilbio.2004.05.023
Hagedorn, F., Spinnler, D. and Siegwolf, R. (2003) Increased N Deposition Retards Mineralization of Old Soil Organic Matter. Soil Biology and Biochemistry, 35, 1683-1692. https://doi.org/10.1016/j.soilbio.2003.08.015
Cheng, W. (1999) Rhizosphere Feedbacks in Elevated CO2. Tree Physiology, 19, 313-320. https://doi.org/10.1093/treephys/19.4-5.313
Kuzyakov, Y. and Bol, R. (2005) Sources and Mechanisms of Priming Effect Induced in Two Grassland Soils Amended with Slurry and Sugar. Soil Biology and Biochemistry, 38, 747-758. https://doi.org/10.1016/j.soilbio.2005.06.025
王浩, 杨钰, 习丹, 丘清燕, 胡亚林. 易分解有机碳输入量对武夷山不同林型土壤激发效应的影响[J]. 生态学报, 2020, 40(24): 9184-9194.
Gontikaki, E., Thornton, B., Huvenne, V.A.I. and Witte, U. (2013) Negative Priming Effect on Organic Matter Mineralisation in NE Atlantic Slope Sediments. PLoS ONE, 8, e67722. https://doi.org/10.1371/journal.pone.0067722
Sallih, Z. and Bottner, P. (1988) Effect of Wheat (Triticum aestivum ) Roots on Mineralization Rates of Soil Organic Matter. Biology and Fertility of Soils, 7, 67-70. https://doi.org/10.1007/BF00260735
Nobili, M.D., Contin, M., Mondini, C. and Brookes, P.C. (2001) Soil Microbial Biomass Is Triggered into Activity by Trace Amounts of Substrate. Soil Biology and Biochemistry, 33, 1163-1170. https://doi.org/10.1016/S0038-0717(01)00020-7
Liu, X.J.A., Finley, B.K., Mau, R.L., Schwartz, E., Dijkstra, P., Bowker, M.A., et al. (2020) The Soil Priming Effect: Consistent Across Ecosystems, Elusive Mechanisms. Soil Bi-ology & Biochemistry, 140, Article ID: 107617. https://doi.org/10.1016/j.soilbio.2019.107617
Drake, J.E., Darby, B.A., Giasson, M.A., Kramer, M.A., Phil-lips, R.P. and Finzi, A.C. (2013) Stoichiometry Constrains Microbial Response to Root Exudation-Insights from a Model and a Field Experiment in a Temperate Forest. Biogeosciences, 10, 821-838. https://doi.org/10.5194/bg-10-821-2013
Fontaine, S., Mariotti, A. and Abbadie, L. (2003) The Priming Effect of Organic Matter: A Question of Microbial Competition? Soil Biology and Biochemistry, 35, 837-843. https://doi.org/10.1016/S0038-0717(03)00123-8
Fontaine, S., Henault, C., Aamor, A., Bdioui, N., Bloor, J.M.G., Maire, V., et al. (2011) Fungi Mediate Long Term Sequestration of Carbon and Nitrogen in Soil through Their Priming Effect. Soil Biology & Biochemistry, 43, 86-96. https://doi.org/10.1016/j.soilbio.2010.09.017
Wang, Q., Wang, S., He, T., Liu, L. and Wu, J. (2014) Re-sponse of Organic Carbon Mineralization and Microbial Community to Leaf Litter and Nutrient Additions in Subtropical Forest Soils. Soil Biology & Biochemistry, 71, 13-20. https://doi.org/10.1016/j.soilbio.2014.01.004
Rousk, J., Hill, P.W. and Jones, D.L. (2015) Priming of the Decomposition of Ageing Soil Organic Matter: Concentration Dependence and Microbial Control. Functional Ecology, 29, 285-296. https://doi.org/10.1111/1365-2435.12377
黄文昭, 赵秀兰, 朱建国, 谢祖彬, 朱春梧. 土壤碳库激发效应研究[J]. 土壤通报, 2007(1): 149-154.
White, D.C. (1995) Chemical Ecology: Possible Linkage between Macro- and Microbial Ecology. Oikos, 74, 177-184. https://doi.org/10.2307/3545646
Hobbie, J.E. and Hobbie, E.A. (2013) Microbes in Nature Are Limited by Carbon and Energy: The Starving-Survival Lifestyle in Soil and Consequences for Estimating Microbial Rates. Frontiers in Microbiology, 4, Article No. 324. https://doi.org/10.3389/fmicb.2013.00324
Lıu, X.J.A., Sun, J., Mau, R.L., Finley, B.K., Compson, Z.G., van Gestel, N., et al. (2017) Labile Carbon İnput Determines the Direction and Magnitude of the Priming Effect. Applied Soil Ecology, 109, 7-13. https://doi.org/10.1016/j.apsoil.2016.10.002