细根是植物吸收水分和养分的重要器官,其形态和解剖结构对氮沉降的响应已经成为生态学热点。虽然中国区域的NO3-氮沉降仍然处于增加状态,但是NH4+湿沉降显著降低,中国大气氮沉降量已经趋于稳定。氮沉降增加对细根形态以及解剖结构会产生变化,变化因树种、土壤以及施氮量而存在差异。该文根据大量前期研究的结果综述了氮沉降对细根形态(直径、长度、比根长)、解剖结构(中柱、皮层)以及化学计量学(C、N、P)的响应趋势以及潜在的机制。这些结果对于理解森林生态系统水平上的碳和养分循环具有重要意义。 Fine roots are important organs for water and nutrient uptake by plants, and the response of fine root morphology as well as anatomical structure to nitrogen deposition has become a hot topic in ecology. This paper reviews the trends and potential mechanisms of N deposition in response to fine root morphology (diameter, length, specific root length), anatomical structure (stele, cortex), and stoichiometry (C, N, P) based on the results of numerous previous studies. Although NO3-N deposition is still increasing in Chinese, NH4+wet deposition is significantly reduced. What’s more, atmospheric N deposition has stabilized in China. Increased N deposition produced changes in fine root morphology and anatomical structure that varied by tree species, soil, and N application rate. These results have important implications for understanding carbon and nutrient cycling at the forest ecosystem.
细根,氮沉降,形态,解剖结构,化学计量学, Fine Root
Nitrogen Deposition
Morphology
Anatomical Structure
Stoichiometry
摘要
细根是植物吸收水分和养分的重要器官,其形态和解剖结构对氮沉降的响应已经成为生态学热点。虽然中国区域的 N O 3 − 氮沉降仍然处于增加状态,但是 N H 4 + 湿沉降显著降低,中国大气氮沉降量已经趋于稳定。氮沉降增加对细根形态以及解剖结构会产生变化,变化因树种、土壤以及施氮量而存在差异。该文根据大量前期研究的结果综述了氮沉降对细根形态(直径、长度、比根长)、解剖结构(中柱、皮层)以及化学计量学(C、N、P)的响应趋势以及潜在的机制。这些结果对于理解森林生态系统水平上的碳和养分循环具有重要意义。
关键词
细根,氮沉降,形态,解剖结构,化学计量学
Simulated Effects of Atmospheric Nitrogen Deposition on the Morphology and Anatomical Structure of Fine Roots: A Review
He Sun, Yajuan Xing*
College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin Heilongjiang
Received: Apr. 2nd, 2021; accepted: May 5th, 2021; published: May 12th, 2021
ABSTRACT
Fine roots are important organs for water and nutrient uptake by plants, and the response of fine root morphology as well as anatomical structure to nitrogen deposition has become a hot topic in ecology. This paper reviews the trends and potential mechanisms of N deposition in response to fine root morphology (diameter, length, specific root length), anatomical structure (stele, cortex), and stoichiometry (C, N, P) based on the results of numerous previous studies. Although N O 3 − N deposition is still increasing in Chinese, N H 4 + wet deposition is significantly reduced. What’s more, atmospheric N deposition has stabilized in China. Increased N deposition produced changes in fine root morphology and anatomical structure that varied by tree species, soil, and N application rate. These results have important implications for understanding carbon and nutrient cycling at the forest ecosystem.
活性氮(Nr)每年都在增长,从1860年15Tg N到2005年187Tg N,增长了12倍多,这个变化是巨大的 [
19
]。现在,世界上很大一部分地区的平均氮沉降速率超过10 kg N ha−1yr−1,比自然速率高出一个数量级。到2050年,氮沉降速率可能增加一倍,甚至某些地区将达到50 kg N ha−1yr−1[
14
]。在过去的几十年中,经过节约能源,减排措施以及经济转型,欧洲和北美的氮沉降量均呈现下降的趋势 [
20
] [
21
]。
孙 贺,邢亚娟. 模拟大气氮沉降对细根形态和解剖结构影响的研究进展Simulated Effects of Atmospheric Nitrogen Deposition on the Morphology and Anatomical Structure of Fine Roots: A Review[J]. 世界生态学, 2021, 10(02): 193-201. https://doi.org/10.12677/IJE.2021.102021
参考文献References
王兵, 王燕, 赵广东, 包青春. 中国森林生态系统碳平衡研究进展[J]. 内蒙古农业大学学报(自然科学版), 2008(2): 194-199.
Högberg, P., Nordgren, A., Buchmann, N., et al. (2001) Large-Scale Forest Girdling Shows That Current Photosynthesis Drives Soil Respiration. Nature, 411, 789-792. https://doi.org/10.1038/35081058
Liu, Y., Wang, G., Yu, K., et al. (2018) A New Method to Optimize Root Order Classification Based on the Diameter Interval of Fine Root. Scientific Reports, 8, Article No. 2960. https://doi.org/10.1038/s41598-018-21248-6
倪惠菁, 苏文会, 范少辉, 等. 养分输入方式对森林生态系统土壤养分循环的影响研究进展[J]. 生态学杂志, 2019, 38(3): 863-872.
Guo, D., Xia, M., Wei, X., et al. (2008) Anatomical Traits Associated with Absorption and Mycorrhizal Colonization Are Linked to Root Branch Order in Twenty-Three Chinese Temperate Tree Species. New Phytologist, 180, 673-683. https://doi.org/10.1111/j.1469-8137.2008.02573.x
Kou, L., Guo, D., Yang, H., et al. (2015) Growth, Mor-phological Traits and Mycorrhizal Colonization of Fine Roots Respond Differently to Nitrogen Addition in a Slash Pine Plantation in Subtropical China. Plant and Soil, 391, 207-218. https://doi.org/10.1007/s11104-015-2420-x
Li, W., Jin, C., Guan, D., et al. (2015) The Effects of Simulated Nitrogen Deposition on Plant Root Traits: A Meta-Analysis. Soil Biology and Biochemistry, 82, 112-118. https://doi.org/10.1016/j.soilbio.2015.01.001
Zhang, X., Xing, Y., Wang, Q., et al. (2020) Effects of Long-Term Nitrogen Addition and Decreased Precipitation on the Fine Root Morphology and Anatomy of the Main Tree Species in a Temperate Forest. Forest Ecology and Management, 455, Article ID: 117664. https://doi.org/10.1016/j.foreco.2019.117664
Wang, W., Wang, Y., Hoch, G., et al. (2018) Linkage of Root Morphology to Anatomy with Increasing Nitrogen Availability in Six Temperate Tree Species. Plant and Soil, 425, 189-200. https://doi.org/10.1007/s11104-018-3563-3
Yan, G., Zhou, M., Wang, M., et al. (2019) Nitrogen Deposition and Decreased Precipitation Altered Nutrient Foraging Strategies of Three Temperate Trees by Affecting Root and Mycorrhizal Traits. Catena, 181, Article ID: 104094.
张鑫, 邢亚娟, 贾翔, 等. 北方森林细根对氮沉降和二氧化碳浓度升高的响应[J]. 中国农学通报, 2017, 33(30): 84-90.
Yu, G., Jia, Y., He, N., et al. (2019) Stabilization of Atmospheric Nitrogen Deposition in China over the Past Decade. Nature Geoscience, 12, 424-429. https://doi.org/10.1038/s41561-019-0352-4
Liu, X.J., et al. (2013) Enhanced Nitrogen Deposition over China. Nature, 494, 459-462. https://doi.org/10.1038/nature11917
Galloway, J.N., Dentener, F.J., Capone, D.G., et al. (2004) Nitrogen Cycles: Past, Present, and Future. Biogeochemistry, 70, 153-226. https://doi.org/10.1007/s10533-004-0370-0
Quinn, T.R., Canham, C.D., Weathers, K.C., et al. (2009) In-creased Tree Carbon Storage in Response to Nitrogen Deposition in the US. Nature Geoscience, 3, 229-244. https://doi.org/10.1038/ngeo721
Reay, D.S., Dentener, F., Smith, P., et al. (2008) Global Nitrogen Deposition and Carbon Sinks. Nature Geoscience, 1, 430-437. https://doi.org/10.1038/ngeo230
De Schrijver, D.E., et al. (2011) Cumulative Nitrogen Input Drives Species Loss in Terrestrial Ecosystems. Global Ecology & Biogeography, 20, 803-816. https://doi.org/10.1111/j.1466-8238.2011.00652.x
朱莹, 李焕茹, 庾强, 等. 呼伦贝尔草原土壤养分及生物学特性对氮沉降的响应[J]. 应用生态学报, 2018, 29(10): 3221-3228.
Galloway, J.N., Townsend, A.R., Erisman, J.W., et al. (2008) Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions. Science, 320, 889-892. https://doi.org/10.1126/science.1136674
Engardt, M., Simpson, D., Schwikowski, M., et al. (2017) Deposition of Sulphur and Nitrogen in Europe 1900-2050. Model Calculations and Comparison to Historical Observations. Tellus B: Chemical and Physical Meteorology, 69, Article ID: 1328945. https://doi.org/10.1080/16000889.2017.1328945
Du, E.Z. (2016) Rise and Fall of Nitrogen Deposition in the United States. Proceedings of the National Academy of Sciences of the United States of America, 113, E3594-E3595.
Lü, C. and Tian, H. (2007) Spatial and Temporal Patterns of Nitrogen Deposition in China: Syn-thesis of Observational Data Art. No. D22S05. Journal of Geophysical Research, 112, D22S05. https://doi.org/10.1029/2006JD007990
Pan, Y., Tian, S., Wu, D., et al. (2020) Ammonia Should Be Consid-ered in Field Experiments Mimicking Nitrogen Deposition. Atmospheric and Oceanic Science Letters, 13, 248-251. https://doi.org/10.1080/16742834.2020.1733919
Sattelmacher, B. (1990) Effects of the Temperature of the Rooting Zone on the Growth and Development of Roots of Potato (Solanum tuberosum). Annals of Botany, 1, 1.
江俐妮, 魏红旭, 刘勇, 等. 长白落叶松播种苗根系形态可塑性与氮素空间异质性关系[J]. 东北林业大学学报, 2010, 38(1): 24-27.
Wright, S., et al. (2015) Fine-Root Responses to Fertilization Reveal Multiple Nutrient Limi-tation in a Lowland Tropical Forest. Ecology: A Publication of the Ecological Society of America, 96, 2137-2146. https://doi.org/10.1890/14-1362.1
Lucas, R.W., Klaminder, J., Futter, M.N., et al. (2011) A Meta-Analysis of the Effects of Nitrogen Additions on Base Cations: Implications for Plants, Soils, and Streams. Forest Ecology and Management, 262, 95-104. https://doi.org/10.1016/j.foreco.2011.03.018
Mccormack, M.L., Dickie, I.A., Eissenstat, D.M., et al. (2015) Redefining Fine Roots Improves Understanding of Below-Ground Contributions to Terrestrial Biosphere Processes. New Phytologist, 207, 505-518. https://doi.org/10.1111/nph.13363
Wells, C.E., Glenn, D.M. and Eissenstat, D.M. (2002) Changes in the Risk of Fine-Root Mortality with Age: A Case Study in Peach, Prunus persica (Rosaceae). American Journal of Botany, 89, 79-87. https://doi.org/10.3732/ajb.89.1.79
陈冠陶, 郑军, 彭天驰, 等. 扁刺栲不同根序细根形态和化学特征及其对短期氮添加的响应[J]. 应用生态学报, 2017, 28(11): 3461-3468.
刘金梁, 梅莉, 谷加存, 等. 内生长法研究施氮肥对水曲柳和落叶松细根生物量和形态的影响[J]. 生态学杂志, 2009, 28(1): 1-6.
King, J.S., Thomas, R.B. and Strain, B.R. (1997) Morphology and Tissue Quality of Seedling Root Systems of Pinus taeda and Pinus ponderosa as Affected by Varying CO2, Temperature, and Nitrogen. Plant & Soil, 195, 107-119. https://doi.org/10.1023/A:1004291430748
Wang, G., Fahey, T.J. and Xue, S. (2013) Root Morphology and Architecture Respond to N Addition in Pinus tabuliformis, West China. Oecologia, 171, 583-590. https://doi.org/10.1007/s00442-012-2441-6
Chen, G.T., Tu, L.H., Peng, Y., et al. (2016) Effect of Nitrogen Additions on Root Morphology and Chemistry in a Subtropical Bamboo Forest. Plant & Soil, 412, 441-451. https://doi.org/10.1007/s11104-016-3074-z
郭伟, 宫浩, 韩士杰, 等. 氮、水交互对长白山阔叶红松林细根形态及生产量的影响[J]. 北京林业大学学报, 2016, 38(4): 29-35.
郭大立, 王政权. 根系生态学[J]. 植物生态学报, 2008, 32(6): 1213-1216.
Taylor, B.N., Strand, A.E., Cooper, E.R., et al. (2014) Root Length, Biomass, Tissue Chemistry and Mycorrhizal Colonization Following 14 Years of CO2 Enrichment and 6 Years of N Fertilization in a Warm Temperate Forest. Tree Physiology, 34, 955-965. https://doi.org/10.1093/treephys/tpu058
Wang, G., Liu, F. and Xue, S. (2017) Nitrogen Addition Enhanced Water Uptake by Affecting Fine Root Morphology and Coarse Root Anatomy of Chinese Pine Seedlings. Plant & Soil, 418, 177-189. https://doi.org/10.1007/s11104-017-3283-0
刘瑞雪, 吴泓瑾, 黄国柱, 等. 氮添加对树木根系特性的影响[J]. 应用生态学报, 2019, 30(5): 316-323.
Valenzuela-Estrada, L.R., Vera-Caraballo, V., Ruth, L.E., et al. (2008) Root Anatomy, Morphology, and Longevity among Root Orders in Vaccinium corymbosum (Ericaceae). American Journal of Botany, 95, 1506-1514. https://doi.org/10.3732/ajb.0800092
史顺增, 熊德成, 冯建新, 等. 模拟氮沉降对杉木幼苗细根的生理生态影响[J]. 生态学报, 2017, 37(1): 74-83.
Latt, C.R., Nair, P.K.R. and Kang, B.T. (2001) Reserve Carbohydrate Levels in the Boles and Structural Roots of Five Multipurpose Tree Species in a Seasonally Dry Tropical Climate. Forest Ecology and Management, 146, 145-158. https://doi.org/10.1016/S0378-1127(00)00456-4
Enstone, D.E., Peterson, C.A. and Ma, F. (2002) Root En-dodermis and Exodermis: Structure, Function, and Responses to the Environment. Journal of Plant Growth Regulation, 21, 335-351. https://doi.org/10.1007/s00344-003-0002-2
Ma, Z.Q., et al. (2018) Evolutionary History Re-solves Global Organization of Root Functional Traits. Nature, 570, E25. https://doi.org/10.1038/nature26163
Jin, X., Yang, X., Islam, E., et al. (2008) Effects of Cadmium on Ultra-structure and Antioxidative Defense System in Hyperaccumulator and Non-Hyperaccumulator Ecotypes of Sedum alfredii Hance. Journal of Hazardous Materials, 156, 387-397. https://doi.org/10.1016/j.jhazmat.2007.12.064
Nagel, O.W., Konings, H. and Lambers, H. (2001) The Influence of a Reduced Gibberellin Biosynthesis and Nitrogen Supply on the Morphology and Anatomy of Leaves and Roots of Tomato (Solanum lycopersicum). Physiologia Plantarum, 111, 40-45. https://doi.org/10.1034/j.1399-3054.2001.1110106.x
王政权, 陈卫王. 水曲柳苗木根系形态和解剖结构对不同氮浓度的反应[J]. 林业科学, 2010, 46(2): 61-66.
闫国永, 王晓春, 邢亚娟, 等. 兴安落叶松林细根解剖结构和化学组分对N沉降的响应[J]. 北京林业大学学报, 2016, 38(4): 36-43.
Krasowski, M. and Owens, J. (2000) Tracheids in White Spruce Seedling’s Long Lateral Roots in Response to Nitrogen Availability. In: The Supporting Roots of Trees and Woody Plants: Form, Function and Physiology, Springer, Berlin, 357-370. https://doi.org/10.1007/978-94-017-3469-1_35
谷加存, 赵妍丽, 王文娜, 等. 皮层和中柱对水曲柳和落叶松吸收根直径变异的影响[J]. 林业科学, 2014, 50(10): 59-66.
洪梓明, 邢亚娟, 闫国永, 等. 长白山白桦山杨次生林细根形态特征和解剖结构对氮沉降的响应[J]. 生态学报, 2020, 40(2): 608-620.
Mei, L., et al. (2004) A Review: Factors Influencing Fine Root Longevity in Forest Ecosystems. Chinese Journal of Plant Ecology, 28, 704-710. https://doi.org/10.17521/cjpe.2004.0094
陈廷廷, 杨玉盛, 史顺增, 等. 土壤增温对幼龄杉木细根化学计量学特征的影响[J]. 亚热带资源与环境学报, 2018, 13(2): 13-21.
王春雪, 何光熊, 宋子波, 等. 元江元谋干热河谷土壤氮磷水平对酸角叶片氮磷含量及光合的影响[J]. 生态学杂志, 2019, 38(3): 710-718.
Hyvnen, R., Persson, T., Andersson, S., et al. (2008) Impact of Long-Term Nitrogen Addition on Carbon Stocks in Trees and Soils in Northern Europe. Biogeochemistry, 89, 121-137. https://doi.org/10.1007/s10533-007-9121-3
Hendricks, J.J., Nadelhoffer, K.J. and Aber, J.D. (1993) As-sessing the Role of Fine Roots in Carbon and Nutrient Cycling. Tree, 8, 174-178. https://doi.org/10.1016/0169-5347(93)90143-D
Nadelhoffer, K.J. (2000) The Potential Effects of Nitrogen Deposition on Fine-Root Production in Forest Ecosystems. New Phytologist, 147, 131-139. https://doi.org/10.1046/j.1469-8137.2000.00677.x
Kochsiek, A., Tan, S. and Russo, S.E. (2013) Fine Root Dynamics in Relation to Nutrients in Oligotrophic Bornean Rain Forest Soils. Plant Ecology, 214, 869-882. https://doi.org/10.1007/s11258-013-0215-9
郭润泉, 熊德成, 宋涛涛, 等. 模拟氮沉降对杉木幼苗细根化学计量学特征的影响[J]. 生态学报, 2018, 38(17): 6101-10.
Kraus, T.E.C., Zasoski, R.J. and Dahlgren, R.A. (2004) Fertility and pH Effects on Polyphenol and Condensed Tannin Concentrations in Foliage and Roots. Plant and Soil, 262, 95-109. https://doi.org/10.1023/B:PLSO.0000037021.41066.79
Vance, C.P., Uhde-Stone, C. and Allan, D.L. (2003) Phosphorus Acquisition and Use: Critical Adaptations by Plants for Securing a Nonrenewable Resource. New Phytologist, 157, 423-447. https://doi.org/10.1046/j.1469-8137.2003.00695.x
Zhu, F., Yoh, M., Gilliam, F.S., et al. (2013) Nutrient Limitation in Three Lowland Tropical Forests in Southern China Receiving High Nitrogen Deposition: Insights from Fine Root Responses to Nutrient Additions. PLoS ONE, 8, e82661. https://doi.org/10.1371/journal.pone.0082661
Ostertag, R. (2010) Foliar Nitrogen and Phosphorus Accumu-lation Responses after Fertilization: An Example from Nutrient-Limited Hawaiian Forests. Plant & Soil, 334, 85-98. https://doi.org/10.1007/s11104-010-0281-x
熊德成, 黄锦学, 杨智杰, 等. 亚热带六种天然林树种细根养分异质性[J]. 生态学报, 2012, 32(14): 4343-4351.