抗滑桩和桩板墙设计计算时,很多规范认为嵌入岩石较深时可选用自由或铰接,个别规范甚至支持固定。本文通过Midas civil软件模拟抗滑桩计算,讨论桩底自由、铰接和固定不同约束的计算结果差异,并提出支承错误选用的风险,建议规范对桩底约束宜采用自由端进行计算,尤其是在变形控制时应采 In the design and calculation of anti-slide piles and pile walls, many codes believe that when the rock is embedded in deep, free joints or hinge joints can be used, and some codes even support fixing. In this paper, the calculation of anti-slide piles is simulated by Midas-Civil software geotechnical calculation. The differences in the calculation results of free pile bottom, hinged pile bottom and fixed pile bottom are discussed, and the risk of wrong choice of support is put forward. It is recommended that the free end should be used in the calculation of the pile bottom constraint in the code, especially in the deformation control, the constraint of the hinged and fixed pile bottom should be deleted to avoid use the wrong model, and the actual engineering deformation is too large.
抗滑桩和桩板墙设计计算时,很多规范认为嵌入岩石较深时可选用自由或铰接,个别规范甚至支持固定。本文通过Midas civil软件模拟抗滑桩计算,讨论桩底自由、铰接和固定不同约束的计算结果差异,并提出支承错误选用的风险,建议规范对桩底约束宜采用自由端进行计算,尤其是在变形控制时应采用自由端,而对于桩底铰接和固定端的约束应删除,避免采用错误的模型,导致实际工程的变形过大。
抗滑桩,桩板墙,桩底支撑
Chuanxin Huang1, Yangyang Chao1, Jian Wu1, Ping Wu2
1Chongqing LeWay Civil Engineering Design Co., Ltd., Chongqing
2China Northwest Municipal Engineering Design and Research Institute, Lanzhou Gansu
Received: Apr. 3rd, 2021; accepted: Apr. 22nd, 2021; published: Apr. 29th, 2021
In the design and calculation of anti-slide piles and pile walls, many codes believe that when the rock is embedded in deep, free joints or hinge joints can be used, and some codes even support fixing. In this paper, the calculation of anti-slide piles is simulated by Midas-Civil software geotechnical calculation. The differences in the calculation results of free pile bottom, hinged pile bottom and fixed pile bottom are discussed, and the risk of wrong choice of support is put forward. It is recommended that the free end should be used in the calculation of the pile bottom constraint in the code, especially in the deformation control, the constraint of the hinged and fixed pile bottom should be deleted to avoid use the wrong model, and the actual engineering deformation is too large.
Keywords:Anti-Slide Pile, Pile Wall, Bottom Support
Copyright © 2021 by author(s) and beplay安卓登录
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/
抗滑桩和桩板墙设计计算时,很多规范认为嵌入岩石较深时可选用自由或铰接,仅《滑坡防治设计规范》(GB/T38509-2020) [
1) 岩质地基弹簧刚度系数模拟
通用软件中弹簧模拟,建议每延米分4 (或8段,越细越精确),由于第1个节点与最后第i个节点与中间节点( 2 , ⋯ , i − 1 )单元长度差异见图1,导致他们的弹簧刚度系数差异 [
2) 有限元节点的岩土体横向压应力计算:
σ x i = F x i / ( n B P ) , 其 中 i = 2 , ⋯ , i − 1 (式-1)
σ s i = F x i / ( 2 n B P ) , 其 中 i = 1 , i (式-2)
式中: σ x i ——第i个节点岩土体应力(kPa); F x i ——第i个节点反力(kN);n——每延米节点分段数;BP-参照《通用有限元模拟抗滑桩或桩板墙计算》式4~7计算桩的计算宽度(m) [
某一级路,滑体厚度6 m,滑面为岩土界面,嵌固岩层为泥岩,单轴极限抗压强度6.7 Mpa,滑坡推力为300 kN/m,抗滑桩悬臂段为6米,嵌固段为5米,桩中心间距为5米,桩采用C30砼,截面为1.5 × 2 m (宽 × 高),嵌固段(中风化泥岩)岩体水地基系数K = 60 MN/m3,(滑坡推力按矩形分布计算),桩结构由滑坡推力控制,按照《公路路基设计规范》(JTGD30-2015) [
本模型桩上均布荷载 [
模型按照每延米4个节点进行划分,节点的弹簧刚度系数 [
K s 1 = K s i = 6 0000 × 2 . 5 / ( 2 × 4 ) = 1875 0 kN / m .
K s 2 = K s i − 1 = 6 0000 × 2 . 5 / 4 = 375 00 kN / m .
图1. 嵌固段节点单元划分模型
1) Midas计算结果
Midas软件桩底不同约束条件的弯矩汇总见图2;
Midas软件桩底不同约束条件的剪力汇总见图3;
Midas软件桩底不同约束条件的位移汇总见图4,反力见图5。
图2. 弯矩图(kN.m)
图3. 剪力图(kN)
图4. 位移图(mm)
图5. 土反力图(kpa)
由于铰结和固定约束,桩端反力很大(尤其是桩端铰接),存在应力集中问题。桩端应力极易超过岩土体的承载能力,而进入塑性状态,荷载不变的情况下内力变形都会调整,使得计算更加复杂,常规的勘察和计算方法都无法准确计算,因此不宜采用桩端铰接和固定计算。
2) 不同约束条件结果对比
目前对于桩端约束只有少数规范提了固定端的约束,此约束桩端弯矩最大。但桩与岩体无钢筋连接,不能受拉传递弯矩,这种模型的理论与实际是不相符的,其桩顶位移是几种约束中最小的,极易导致工程实际位移超过计算位移。
桩底铰接与桩底自由最大弯矩和剪力比值分别为5310/5028 × 100% = 105.6%、2050.3/1767.9 × 100% = 115.9%,说明通过桩底铰接比桩底自由的配筋量更大,但桩底铰接约束方式计算的桩顶位移偏小(本案例桩底铰接与自由计算出桩顶的位移比为 = 25.68/50.31 = 51%),对需要控制变形的边坡,可能存在实际变形超计算变形的风险。
本文结合现行《铁路路基支挡结构设计规范》(TB 10025-2019)、《公路路基设计规范》(JTGD30-2015)、等规范,采用Midas Civil软件模拟抗滑桩在桩底自由、铰接和固定三种约束下的计算结果,对比后发现:桩底铰接比桩底自由计算的弯矩和配筋略大,桩端反力极易超过规范容许值,部分软件未能正确计算桩端节点反力(或应力)。但桩底铰接计算的桩顶位移偏小,对需要控制变形的边坡,可能导致工程实际位移超过计算位移。
桩底固定约束条件下,计算弯矩最大、计算桩顶位移最小,桩端弯矩与实际情况不符。建议规范对桩底约束应采用自由端进行计算,对于桩底固定端和铰接端的约束应删除,避免误导设计师,采用错误的桩端约束,导致实际工程的变形过大。
黄钏鑫,晁洋洋,吴 坚,吴 平. 抗滑桩或桩板墙桩底支承错误选用的设计风险Design Risk of Incorrect Selection of Bottom Support of Anti-Slide Pile or Pile Wall[J]. 土木工程, 2021, 10(04): 368-373. https://doi.org/10.12677/HJCE.2021.104042