脑白质结构网络系统中大量的神经元或是神经元集群间的拓扑结构使得大脑的结构和功能具有复杂性,这在脑区间的信息传递起到关键作用。其中,相较功能网络和效率网络来说,结构网络主要以神经纤维结构连接层面作为大脑认知的基础。因此,基于弥散张量成像数据所构建的大脑结构网络至今依然是学者们研究的重点。现阶段国内外对脑白质结构网络的相关研究,在某种程度上可以辅助许多脑疾病的预测和诊断。本文回顾了近期DTI技术、神经纤维束跟踪技术在人脑白质结构网络构建方面的相关研究与成果,并对该领域的新兴研究点进行了展望。 The structure and function of the brain are complicated due to a large number of neurons or the topology of clusters of neurons in the white matter network system, which plays a key role in the information transmission between brain regions. Compared with functional and efficiency network, structural network is mainly based on the structural connection of nerve fibers as the basis of brain cognition. Therefore, the brain structure network based on the diffusion tensor imaging data is still the focus of scholars' research. At present, the related research on the network of brain white matter can assist the prediction and diagnosis of many brain diseases to some extent. In this paper, we review the recent research and achievements of DTI and fiber tracking technology in the construction of human brain white matter structural networks, and look forward to the new research areas in this field.
脑白质结构网络,弥散张量成像,小世界属性, White Matter Network
Diffusion Tensor Imaging
Small-World Property
摘要
The structure and function of the brain are complicated due to a large number of neurons or the topology of clusters of neurons in the white matter network system, which plays a key role in the information transmission between brain regions. Compared with functional and efficiency network, structural network is mainly based on the structural connection of nerve fibers as the basis of brain cognition. Therefore, the brain structure network based on the diffusion tensor imaging data is still the focus of scholars' research. At present, the related research on the network of brain white matter can assist the prediction and diagnosis of many brain diseases to some extent. In this paper, we review the recent research and achievements of DTI and fiber tracking technology in the construction of human brain white matter structural networks, and look forward to the new research areas in this field.
张羽萍. 基于弥散张量成像的脑白质结构网络相关研究进展Research Progress of White Matter Structural Networks Based on Diffusion Tensor Imaging[J]. 社会科学前沿, 2021, 10(04): 1017-1022. https://doi.org/10.12677/ASS.2021.104136
参考文献References
Fornito, A., Zalesky, A. and Breakspear, M. (2013) Graph Analysis of the Human Connectome: Promise, Progress, and Pitfalls. Neuroimage, 80, 426-444. https://doi.org/10.1016/j.neuroimage.2013.04.087
蒋田仔, 刘勇, 李永辉. 脑网络: 从脑结构到脑功能[J]. 生命科学, 2009, 21(2): 181-188.
Bihan, D.L., Mangin J.F., Poupon, C., et al. (2010) Diffusion Tensor Imaging: Concepts and Applications. Journal of Magnetic Resonance Imaging, 13, 534-546. https://doi.org/10.1002/jmri.1076
Basser, P.J. and Jones, D.K. (2002) Diffusion-Tensor MRI: Theory, Experimental Design and Data Analysis—A Technical Review. NMR in Biomedicine, 15, 456-467. https://doi.org/10.1002/nbm.783
梁夏, 王金辉, 贺永. 人脑连接组研究: 脑结构网络和脑功能网络[J]. 科学通报, 2010, 55(16): 1565-1583.
Guye, M., Bettus, G., Bartolomei, F., et al. (2010) Graph Theoretical Analysis of Structural and Functional Connectivity MRI in Normal and Pathological Brain Networks. Magnetic Resonance Materials in Physics Biology & Medicine, 23, 409-421. https://doi.org/10.1007/s10334-010-0205-z
Karwowski, W., Farahani, F.V. and Lighthall, N.R. (2019) Application of Graph Theory for Identifying Connectivity Patterns in Human Brain Networks: A Systematic Review. Frontiers in Neuroscience, 13, 585. https://doi.org/10.3389/fnins.2019.00585
杨澄, 王丽嘉, 王远军, 等. 基于弥散张量成像技术构建人脑结构网络的研究进展[J]. 中国医学影像技术, 2016, 32(2): 302-305.
Bassett, D.S., Brown, J.A., Deshpande, V., et al. (2011) Conserved and Variable Architecture of Human White Matter Connectivity. Neuroimage, 54, 1262-1279. https://doi.org/10.1016/j.neuroimage.2010.09.006
Crofts, J.J., Higham, D.J., Bosnell, R., et al. (2011) Network Analysis Detects Changes in the Contralesional Hemisphere Following Stroke. Neuroimage, 54, 161-169. https://doi.org/10.1016/j.neuroimage.2010.08.032
Hua, K., Zhang, J., Wakana, S., et al. (2008) Tract Probability Maps in Stereotaxic Spaces: Analyses of White Matter Anatomy and Tract-Specific Quantification. NeuroImage, 39, 336-347. https://doi.org/10.1016/j.neuroimage.2007.07.053
Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., et al. (2002) Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain. NeuroImage, 15, 273-289. https://doi.org/10.1006/nimg.2001.0978
Eickhoff, S.B., Stephan, K.E., Mohlberg, H., et al. (2005) A New SPM Toolbox for Combining Probabilistic Cytoarchitectonic Maps and Functional Imaging Data. NeuroImage, 25, 1325-1335. https://doi.org/10.1016/j.neuroimage.2004.12.034
Gong, G., He, Y., Concha, L., et al. (2008) Mapping Anatomical Connectivity Patterns of Human Cerebral Cortex Using in Vivo Diffusion Tensor Imaging Tractography. Cereb Cortex, 19, 524-536. https://doi.org/10.1093/cercor/bhn102
Toga, A.W., et al. (2012) Mapping the Human Connectome. Neurosurgery, 71, 1-5. https://doi.org/10.1227/NEU.0b013e318258e9ff
Lim, K. and Helpern, J. (2002) Neuropsychiatric Applications of DTI—A Review. NMR in Biomedicine, 15, 587-593. https://doi.org/10.1002/nbm.789
Behrens, T.E., et al. (2007) Probabilistic Diffusion Tractography with Multiple Fibre Orientations: What Can We Gain? NeuroImage, 34, 144-155. https://doi.org/10.1016/j.neuroimage.2006.09.018
Watts, D.J. and Strogatz, S.H. (1998) Collective Dynamics of “Small-World” Networks. Nature, 393, 440-442. https://doi.org/10.1038/30918
Rubinov, M. and Sporns, O. (2010) Complex Network Measures of Brain Connectivity: Uses and Interpretations. Neuroimage, 52, 1059-1069. https://doi.org/10.1016/j.neuroimage.2009.10.003
Mechelli, A., Crinion, J.T., Noppeney, U., et al. (2004) Neurolinguistics: Structural Plasticity in the Bilingual Brain. Nature, 431, 757. https://doi.org/10.1038/431757a
He, Y., Chen, Z. and Evans, A.C. (2007) Small-World Anatomical Networks in the Human Brain Revealed by Cortical Thickness from MRI. Cereb Cortex, 17, 2407-2419. https://doi.org/10.1093/cercor/bhl149
Chen, Z., He, Y., Rosa-Neto, P., et al. (2008) Revealing Modular Architecture of Human Brain Structural Networks by Using Cortical Thickness from MRI. Cereb Cortex, 18, 2374-2381. https://doi.org/10.1093/cercor/bhn003
Lenroot, R.K., Bassett, D.S., Clasen, L.S., et al. (2009) Developmental Changes in Topographic Properties of Anatomical Networks in Children and Adolescents. NeuroImage, 47, S175. https://doi.org/10.1016/S1053-8119(09)71911-1
Lama, L. (2020) White Matter Network Alterations in Alzheimer’s Disease Patients. Applied Sciences, 10, 919. https://doi.org/10.3390/app10030919
陈思霨, 周乐为, 衷弘熙, 等. 基于弥散张量成像的阿尔茨海默病患者脑白质结构网络改变的研究[J]. 中华老年心脑血管病杂志, 2019, 21(4): 10-14.
秦新, 鲁毅, 孙学进. 2型糖尿病脑白质微结构网络拓扑结构改变的相关研究[J]. 放射学实践, 2020, 35(1): 32-39.
Zhang, J.Y., et al. (2016) Disrupted White Matter Network and Cognitive Decline in Type 2 Diabetes Patients. Journal of Alzheimer’s Disease: JAD, 53, 185-195. https://doi.org/10.3233/JAD-160111
Wang, Q., Su, T.P., Zhou, Y., et al. (2012) Anatomical Insights into Disrupted Small-World Networks in Schizophrenia. Neuroimage, 59, 1085-1093. https://doi.org/10.1016/j.neuroimage.2011.09.035
Shu, N., Liu, Y., Li, K.C., et al. (2011) Diffusion Tensor Tractography Reveals Disrupted Topological Efficiency in White Matter Structural Networks in Multiple Sclerosis. Cereb Cortex, 21, 2565-2577. https://doi.org/10.1093/cercor/bhr039
Caeyenberghs, K., Leemans, A., Leunissen, I., et al. (2014) Altered Structural Networks and Executive Deficits in Traumatic Brain Injury Patients. Brain Structure & Function, 219, 193-209. https://doi.org/10.1007/s00429-012-0494-2
Yap, P.T., Yong, F., Chen, Y., et al. (2011) Development Trends of White Matter Connectivity in the First Years of Life. PLoS ONE, 6, e24678. https://doi.org/10.1371/journal.pone.0024678
Zalesky, A., Fornito, A., Harding, I.H., et al. (2010) Whole-Brain Anatomical Networks: Does the Choice of Nodes Matter? Neuroimage, 50, 970-983. https://doi.org/10.1016/j.neuroimage.2009.12.027