本文梳理了传统人工智能课程教学存在的问题,提出要开展以实践动手能力培养为核心的人工智能课程教学工作。通过深化产学研合作,构建产学协同育人实践应用的教学平台的方式来实现,在“新工科”建设的大背景下,创新课程建设,适时调整,培养出适应社会和企业需求的创新型和复合型人才。 In this paper, we review the problems existing in the teaching process of the traditional artificial intelligence course and propose to carry out the artificial intelligence course teaching with the cultivation of practical ability as the core. By deepening the cooperation among industry, educa-tion, and research, a teaching platform for the collaborative education of industry and learning can be built. Thus, the artificial intelligence course construction could be innovated and timely adjusted under the background of the “new engineering”, to cultivate innovative and compound talents to meet the needs of society and enterprises.
本文梳理了传统人工智能课程教学存在的问题,提出要开展以实践动手能力培养为核心的人工智能课程教学工作。通过深化产学研合作,构建产学协同育人实践应用的教学平台的方式来实现,在“新工科”建设的大背景下,创新课程建设,适时调整,培养出适应社会和企业需求的创新型和复合型人才。
新工科,人工智能,课程建设
Lei Chen, Fangqing Gu, Mengbo Wu
School of Applied Mathematics, Guangdong University of Technology, Guangzhou Guangdong
Received: Jan. 23rd, 2021; accepted: Feb. 17th, 2021; published: Feb. 25th, 2021
In this paper, we review the problems existing in the teaching process of the traditional artificial intelligence course and propose to carry out the artificial intelligence course teaching with the cultivation of practical ability as the core. By deepening the cooperation among industry, education, and research, a teaching platform for the collaborative education of industry and learning can be built. Thus, the artificial intelligence course construction could be innovated and timely adjusted under the background of the “new engineering”, to cultivate innovative and compound talents to meet the needs of society and enterprises.
Keywords:New Engineering, Artificial Intelligence, Course Construction
Copyright © 2021 by author(s) and beplay安卓登录
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/
为推动工程教育改革创新,教育部从2017年开始积极推进“新工科”建设,探索形成领跑全球工程教育的中国模式、中国经验,助力高等教育强国建设。“新工科”以立德树人为引领,以应对变化、塑造未来为建设理念,以继承与创新、交叉与融合、协调与共享为主要途径,培养未来多元化、创新型卓越工程人才,具有战略型、创新性、系统化、开放式的特征。人工智能作为高校“新工科”建设的重点专业,对高校培养具备高科学素养和强创新创业能力,素质创新型人才发挥重要的基础性作用。作为高等院校信息与计算科学专业、应用数学专业的主要基础课程和部分理工科专业的公共课,人工智能课程主要阐述如何利用计算机来模拟人脑所从事的感知、推理、学习、思考、规划等人类智能活动,来解决需要用人类智能才能解决的问题,以延伸人们智能,具有广泛的实际应用价值,体现了数学原理与实际问题和计算机的有机结合。例如无人机还没有解决智能自主控制的问题,最主要的配送发展存在动态的多目标优化问题,因此无人机下一步产业化、全域化发展应用,必须依托人工智能技术的进步 [
人工智能是一门多学科交叉的综合性学科,以广东工业大学为例,人工智能课程同时也作为数学与应用数学、信息与计算科学、计算机科学与技术、数据科学与大数据技术等本科专业的核心基础课程 [
受到目前教学投入、师资水平、课室建设等局限,现有的人工智能课程教学大部分仍然采取常规的集中授课形式,即根据固定的教学大纲选用现有的教材,由固定的老师在固定时间授课,学生被动式接受。这种传统的人工智能教学模式具有很大的局限性,首先是教学过程机械枯燥,容易出现教师照本宣科、学生复制讲义等情况,课堂上学生缺乏探索知识的过程,导致其逐步丧失学习的积极性和主动性。其次,这种集中授课的教学模式很难满足不同层次水平学生的学习需求,也不能全面促进学生的个性化发展。为了激发学生学习人工智能课程的兴趣和科学探索精神,探索和研究以学生为中心的课堂教学模式对人工智能课程学习的教学改革势在必行。
大学教育的功能之一就是为社会提供源源不断的人才资源,因此,在大学本科的教学活动中,专业实践教学占据了重要地位。通过专业实践教学,学生真正有机会把课堂学习的理论知识同生活实际联系起来,从“纸上谈兵”到实际应用中发现问题、分析问题并解决问题,是对学生科学水平和实践能力的检验,也是教师教学水平的重要体现。并且,专业实践教学拓宽了传统教学的范围,在一定程度上能够促使学生从被动接受书本知识转化为主动思考,综合运用自己所掌握的知识和技能解决问题,从而更好地适应时代和社会发展的需要。人工智能专业的兴起,是顺应科技进步和发展的需要,其本身就具有实践和应用的天然本质,因此,实践教学在人工智能课堂中,比传统课堂更加迫切。但是我国的人工智能教育起步较晚且相对滞后,很多的实践教学环节尚未达到理想水平,在具体的实际开展过程中,存在许多机制不完善或形式大于内容的现象。具体来说,在人工智能教学领域,可操作性强的传统课堂教学,即使能形成一套完整的“教学–反馈”体系,但实践教学操作难度大,因此,容易出现“重理论,轻实际”的现象 [
课程考核方式改革也是高校教学课程改革的重要组成部分。受限于教学方式,传统大学课堂考核内容仍然侧重于教材重点知识、重要理论的知识性考察,需要学生熟练记诵,但知识性考察的重大弊端就是遵循记忆规律,大部分内容在一定时期内逐渐被遗忘。如果人工智能课程依旧采用这种常规的考核方式,实际仅仅考察了学生对于人工智能概念的理解、原理的理解和算法的理解。以广东工业大学为例,人工智能课程的总评成绩一般由期末考试和课程实验实验组成,其中期末考试的成绩占比为70%,而课程实验的成绩仅仅占30%,因此学生仅仅通过考前突击的方式就可以来应付人工智能课程的考核,而且可以获得高分。在固化的考核方式下,人工智能课程实验教学的重要性不断地被削弱,者也会导致部分学生学习积极性受挫。如果人工智能课程设计能够做到课堂教学和专业实践教学的有机结合,并且提高专业实践教学所占的比重,那么考核方式也应当可以做到多样化,更加全面地反映学生掌握知识、解决问题的能力和水平。
基于人工智能课程的特点以及目前教学中存在的主要问题可以发现,人工智能课程教学的核心必须专注于学生实践动手能力的培养。围绕这个核心任务,可以从优化课堂教学设计、建立系统性人工智能课程、营造“知识 + 创新”的学习氛围来逐步实施。
在人工智能课堂教学的各个环节中,要转变传统的固定教材、以教师讲课为主的单一式课堂教学。人工智能毕竟是科技的产物,科技发展日新月异,必然领先于固定的课本教材内容,因此教师需要引导学生自主学习,要鼓励学生利用慕课等互联网资源进行主动式学习,不断拓宽知识的外延。创新课程体系,确立工程化实践课程的内容,带领学生使用科技发展的最新应用技术成果进行软件开发。加强启发式教学、讨论式教学、案例教学和项目教学,培养学生独立学习的能力 [
人工智能课程实际是多学科交叉的综合性学科,因此,不能通过单一地开设个别课程来进行。在与人工智能课程相关的多学科中,彼此都存在有不同程度的联系或者衔接,但学生们由于知识面的原因,往往难以从全局中建立起这种联系,在知识系统中难免出现断裂或误读。因此,需要建立人工智能的系统性课程,根据各交叉课程的衔接关系或者在人工智能知识领域所处的位置,合理地安排人工智能课程开设的时间节点,同时,增设辅助性课程,便于学生们做好知识迁移,也便于教师们做好教学上的衔接。
人工智能课程的兴起,是第三次科技浪潮的产物。人工智能正在通过多种方式改变人类的生活。因此,这是一门极具应用性的课程。这也要求学生们将人工智能知识的学习在实践中进行运用,需要高校极力营造一种“知识 + 创新”的学习氛围。教师们需要鼓励学生提出新构思、新想法,在教学中贯穿实践项目,积极组建项目小组,并鼓励小组成员在交流和思维碰撞中解决面临的困难和问题,还可以通过“互联网+”创新大赛或其他类型的竞赛,增加学生的学习兴趣、激发学生的实践技能、提高学生的创新能力。像此次大学生创新创业比赛中对无人机运输配送动态多目标优化问题的研究,通过项目比赛来融入所学的课程知识,同时学生在面临问题进一步创新。项目中面对高动态、实时、不透明的任务环境,无人机需要自主规划路径、自主识别环境规避障碍,必须提高处理能力和信息存储能力,尤其是预处理能力,而这往往需要学生有人工智能模式识别和人工神经网络方面的创新,很好地营造了“知识 + 创新”的学习氛围 [
人工智能体现了计算机和实际问题的有效结合,其最终目的是应用解决实际问题,在人工智能教学中必须高度重视与市场的结合,构建产学协同育人实践应用的教学平台。人工智能教学领域中的产学协同就是构建以专业教师和企业技术人员为主体的工程研究中心和校企合作实践平台。
校企合作实践平台是地方政府、高校、企业协同建设的平台,是提高地方应用型高校实践教学成效的关键,也关系到“新工科”计划是否落实的关键 [
人工智能是高校“新工科”建设的重点专业,对高校培养具备高科学素养和强创新创业能力,素质创新型人才发挥着重要的基础性作用。本文梳理了人工智能专业教学中存在的问题,包括目前存在传统单一教学模式、缺乏专业实践教学、考核方式固化等问题,并提出人工智能课程教学的核心必须专注于学生实践动手能力的培养,可以通过优化课堂教学设计、建立人工智能系统性课程、营造“知识 + 创新”的学习氛围来培养学生的实践动手能力,并通过深化产学研合作,来构建产学协同育人实践应用的教学平台,以适应“新工科”的发展需要。在“新工科”的大背景下,国家和社会的发展对人工智能专业产生了潜移默化的影响,这促使着人工智能课程教学的变革,各高校及高校教师都应顺应时代发展的潮流,抓住历史的机遇,总结已有的方式方法,积极学习借鉴国外人工智能教学的经验,在高校人工智能课程建设方面勇于创新,敢于突破,让高校成为我国人工智能领域重要的人才储备,培养出真正符合社会和企业需要的创新性和复合型人才。
教育部产学合作协同育人项目“信息与计算科学专业校外实践基地”。
陈 磊,辜方清,吴孟波. “新工科”背景下的人工智能课程建设Artificial Intelligence Curriculum Construction under the Background of “New Engineering”[J]. 创新教育研究, 2021, 09(01): 237-241. https://doi.org/10.12677/CES.2021.91037