本文通过引入弛豫时间和分数阶导数对Pennes方程进行修正,得到了关于温度分布的双相滞后模型。并以此为基础求解了以磁纳米粒子为热源的传热问题,使用Laplace变化得到温度分布的数值解。本文以图像的方式分析了分数阶导数参数、弛豫时间和外加磁场性质对温度分布的影响。 In this paper, the Pennes equation is modified by introducing relaxation time and fractional derivative, and a dual-phase-lag model of temperature distribution is obtained. On this basis, the heat transfer problem with magnetic nanoparticles as the heat source is solved, and the numerical solution of temperature distribution is obtained by using Laplace change. This paper analyzes the effects of fractional derivative parameters, relaxation time and the properties of the external magnetic field on the temperature distribution by figures.
本文通过引入弛豫时间和分数阶导数对Pennes方程进行修正,得到了关于温度分布的双相滞后模型。并以此为基础求解了以磁纳米粒子为热源的传热问题,使用Laplace变化得到温度分布的数值解。本文以图像的方式分析了分数阶导数参数、弛豫时间和外加磁场性质对温度分布的影响。
双相滞后模型,分数阶导数,弛豫时间,磁纳米粒子
Juanxia Zhao, Yongjun Jan*
School of Mathematical Sciences, Inner Mongolia University, Hohhot Inner Mongolia
Received: Nov. 28th, 2020; accepted: Dec. 24th, 2020; published: Dec. 31st, 2020
In this paper, the Pennes equation is modified by introducing relaxation time and fractional derivative, and a dual-phase-lag model of temperature distribution is obtained. On this basis, the heat transfer problem with magnetic nanoparticles as the heat source is solved, and the numerical solution of temperature distribution is obtained by using Laplace change. This paper analyzes the effects of fractional derivative parameters, relaxation time and the properties of the external magnetic field on the temperature distribution by figures.
Keywords:DPL, Fractional Derivative, Relaxation Time, Magnetic Nanoparticles
Copyright © 2020 by author(s) and beplay安卓登录
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/
癌症治疗是近几十年来最具挑战性的临床治疗之一,现代医学采取手术、化疗、放疗等方式治疗癌症或者减少癌细胞的扩散。热疗被公认为一种有效的治疗恶性肿瘤的方式,因为相对正常细胞来说,癌细胞对高温更敏感且其散热要比正常组织差,所以可以通过加热局部温度来杀死癌细胞。热疗的方式有很多种,磁感应热疗是近年来比较热的一种治疗方式。磁感应热疗技术利用铁磁性物质可在交变磁场下感应升温的物理特性,将磁纳米粒子注射到肿瘤组织中,并通过在外部施加的交变磁场,使局部快速升温,达到杀死或诱导肿瘤细胞凋亡的作用。Jordan等人 [
在磁热疗过程中,需要对温度的分布和变化进行精准的预测,才能准确地控制热损伤,提高治疗效果。基于经典傅里叶定律的热传导方程,它是一种抛物线型热传导方程,允许热扰动以无限的速度进行传播。然而,在实际应用中,传热的速度是有限的,并不满足经典的傅里叶传热定律。于是对傅里叶定律进行了修正,通过引入弛豫时间τq和τT,得到了双相滞后(双曲型)方程,给出了一个在微观层面上传热的公式,即双相滞后(Dual-Phase-Lag, DPL)模型 [
q → ( r → , t + τ q ) = − k ∇ T ( r → , t + τ T ) , (1)
其中 r → 代表几何坐标,T表示温度,q表示热量,t是时间,k是导热系数,τq是热流量的弛豫时间,τT表示温度梯度的弛豫时间,弛豫时间被认为是由微观结构相互作用引起的,例如声子–电子相互作用。
Antaki [
由于人体组织温度受多种外界因素的影响,如:血流量、代谢产热以及组织内部热传导效率等。关于这些影响因素与组织温度之间的联系,Pennes [
ρ c ∂ T ∂ t = − ∇ ⋅ q + S ˙ , (2)
热源项 S ˙ 是下面几项的总和:
S ˙ = ω b c b ( T b − T ) + Q m + Q l , (3)
其中ρ,c代表组织的密度和比热容,ωb和cb代表血液的灌注率和比热容,Tb是动脉血液温度,Qm是皮肤组织产生的代谢热,Ql是任何外界来源产生的热。
近年来,分数阶导数已经成为一个迅速发展的领域,在流体力学 [
本文拟研究交变磁场下人体中磁热源粒子产生的热量分布,使用Pennes方程对人体组织温度进行模拟,并考虑引入弛豫时间τq和τT,使用分数阶导数对温度分布函数进行修正。使用Laplace变换的方法对修正的温度分布函数进行求解,并利用数值方法进行Laplace逆变换,最终得到磁热源粒子影响下人体组织温度的具体分布情况,为实验和理论发展提供研究基础。
对方程(1)两边进行泰勒级数展开,并忽略二阶和高阶项(由于τq和τT很小),我们得到方程(1)的一阶近似:
q → ( r → , t ) + τ q ∂ q → ( r → , t ) ∂ t = − k [ ∇ T ( r → , t ) + τ T ∂ ∂ t ∇ T ( r → , t ) ] , (4)
或
( 1 + τ q ∂ ∂ t ) q → ( r → , t ) = − k ( 1 + τ T ∂ ∂ t ) ∇ T ( r → , t ) , (5)
对方程(2)两边同时乘以算子 ( 1 + τ q ∂ ∂ t ) ,得到
ρ c ( 1 + τ q ∂ ∂ t ) ∂ T ∂ t = − ( 1 + τ q ∂ ∂ t ) ∇ ⋅ q → + ( 1 + τ q ∂ ∂ t ) S ˙ . (6)
将式(5)带入式(6),得到:
ρ c ( 1 + τ q ∂ ∂ t ) ∂ T ∂ t = k ( 1 + τ T ∂ ∂ t ) ∇ 2 T ( r → , t ) + ( 1 + τ q ∂ ∂ t ) S ˙ . (7)
为了简化计算,本文中只考虑一维的情况,得到:
( 1 + τ q ∂ ∂ t ) [ ∂ T ∂ t + ω b ρ b c b ρ c ( T − T b ) ] = k ρ c ( 1 + τ T ∂ ∂ t ) ∂ 2 T ∂ x 2 + 1 ρ c ( 1 + τ q ∂ ∂ t ) ( Q m + Q l ) . (8)
在本文中我们考虑Ql为0,采取的边界条件为:
− k ∂ T ∂ x | x = 0 = q 0 , T | x = l = T b , (9)
其中l为组织长度,初始条件为:
T | t = 0 = T b , ∂ T ∂ t | t = 0 = 0. (10)
对上述方程进行无量纲化:
T ¯ = T − T b T ∗ , ( x ¯ , l ¯ ) = ( x , l ) x ∗ , t ¯ = t t ∗ , Q ¯ = Q m Q ∗ , t ∗ = ρ c ω b ρ b c b , x ∗ = k ω b ρ b c b , T ∗ = q 0 k ω b ρ b c b , Q ∗ = q 0 ω b ρ b c b k , (11)
将上述无量纲方程代入式(8),得到
( 1 + τ ¯ q ∂ ∂ t ¯ ) ∂ T ¯ ∂ t ¯ + ( 1 + τ ¯ q ∂ ∂ t ¯ ) T ¯ = ( 1 + τ ¯ q ∂ ∂ t ¯ ) ∂ 2 T ¯ ∂ x ¯ 2 + Q ¯ . (12)
对应的边界条件和初始条件变为:
∂ T ¯ ∂ x ¯ | x ¯ = 0 = − 1 , T ¯ | x ¯ = l = 0 , T ¯ | t ¯ = 0 = T b , ∂ T ¯ ∂ t ¯ | t ¯ = 0 = 0. (13)
为了简单方便,在下述方程中,去掉所有的上标“—”。
在求解温度函数T的过程中,我们引入分数阶导数 D t α 。在关于时间的分数阶导数计算中,本文中采用Caputo-Fabrizio分数阶导数定义 [
D t α f ( x , t ) = 1 1 − α ∫ 0 t e − α 1 − α ( t − τ ) ∂ f ( x , t ) ∂ τ d τ . (14)
则式(12)变为:
( 1 + τ q D t α ) ∂ T ∂ t + ( 1 + τ q D t α ) T = ( 1 + τ T D t β ) ∂ 2 T ∂ x 2 + Q , 0 < α < 1 , 0 < β < 1 , (15)
其中α,β称为分数导数的参数,我们采取Laplace变换对方程(15)进行求解:
L [ f ( x , t ) ] = f ^ ( x , s ) = ∫ 0 ∞ f ( x , t ) e − s t d t . (16)
记 L [ T ] = T ^ ,由Laplace变化的性质知:
L [ ∂ T ∂ t ] = s T ^ , L [ ∂ 2 T ∂ x 2 ] = ∂ 2 T ^ ∂ x 2 , L [ Q ] = Q s . (17)
对分数阶导数进行Laplace变换,得到:
L [ D t α f ( x , t ) ] = 1 1 − α L [ exp ( − α t 1 − α ) ] L [ ∂ f ( x , t ) ∂ t ] = s f ¯ ( x , t ) − f ( x , 0 ) ( 1 − α ) s + α , (18)
L [ D t α ∂ f ∂ t ] = s L ( ∂ f ∂ t ) − ∂ f ∂ t | t = 0 ( 1 − α ) s + α = s ( s f ¯ ( x , t ) − f ( x , 0 ) ) − f ′ t ( x , 0 ) ( 1 − α ) s + α . (19)
将式(16)~(19)带入方程(15),化简后得到:
s T ^ ( x , s ) + τ q ⋅ s ( s T ^ ( x , s ) − 0 ) ( 1 − α ) s + α + T ^ ( x , s ) + τ q s T ^ ( x , s ) ( 1 − α ) s + α = ∂ 2 T ^ ∂ x 2 + τ T s ( 1 − β ) s + β ∂ 2 T ^ ∂ x 2 + Q s , (20)
整理得:
∂ 2 T ^ ∂ x 2 − ( s + 1 ) [ s ( 1 − α ) + α + τ q s ] [ s ( 1 − β ) + β ] [ s ( 1 − α ) + α ] [ s ( 1 − β ) + β + τ T s ] T ^ + s ( 1 − β ) + β [ s ( 1 − β ) + β + τ T s ] s Q = 0. (21)
对应的边界条件化为:
∂ T ^ ∂ x | x = 0 = − 1 s , T ^ | x = l = 0. (22)
令 ω 2 = ( s + 1 ) [ s ( 1 − α ) + α + τ q s ] [ s ( 1 − β ) + β ] [ s ( 1 − α ) + α ] [ s ( 1 − β ) + β + τ T s ] , γ = s ( 1 − β ) + β [ s ( 1 − β ) + β + τ T s ] s ,
即方程(21)表示为:
∂ 2 T ^ ∂ x 2 − ω 2 T ^ = − γ Q . (23)
设该非齐次线性方程的通解为:
T ^ = A cosh ( ω x ) + B sinh ( ω x ) + γ ω 2 Q . (24)
根据边界条件(22)可以解得A,B:
A = − γ Q ω 2 cosh ( ω l ) + 1 ω s tanh ( ω l ) , B = − 1 ω s . (25)
温度进行Laplace变换后 T ^ 的解为:
T ^ ( x , s ) = − γ Q cosh ( ω x ) ω 2 cosh ( ω l ) + 1 ω s sinh [ ω ( l − x ) ] cosh ( ω l ) + γ ω 2 Q . (26)
为了得到温度的具体分布,我们考虑对其进行Laplace逆变换:
f ( x , t ) = L − 1 [ f ^ ( x , s ) ] = 1 2 π i ∫ α − i ∞ α + i ∞ f ^ ( x , s ) e s t d s (27)
其中, s = α + i ∗ η 。由于ω的形式太过复杂,本文中并没有得到式右侧逆变换的解析解。我们通过MATLAB进行数值计算,并最终得到了温度 T ( x , t ) 的具体分布。
本文通过弛豫时间和Caputo-Fabrizio分数阶导数对Pennes方程进行修正,得到了温度分布的数值解。在实际问题中,考虑参考文献 [
磁热疗技术的热疗效应是通过在中频范围内磁滞损耗和弛豫时间引起的,文献 [
Q = π μ 0 χ H 2 f 2 π f τ 1 + ( 2 π f τ ) 2 . (28)
其中μ0是真空磁导率,一般取4π × 10−7(T•m/A),χ= M/H是磁化率,M是磁场强度,一般取为4.25 × 105A/m,H是外加磁场强度,f是交变磁场频率,τ是磁纳米粒子的有效弛豫时间。从式(28)中可以看出,主要有两方面因素影响磁纳米粒子产热,一方面是外磁场本身的相关性质,例如磁场强度和交变磁场频率,在磁场强度和频率的选取中,我们要考虑人体的耐受,一般H的选择范围在104A/m以下,频率f在40 × 103Hz~80 × 103Hz。另一方面是磁纳米粒子的弛豫时间τ,一般取为3.378 × 10−6。
本文中所有图像(图1,图2,图3)坐标都采用的是无量纲形式,根据上述参数及无量纲参数式(11),参考温度T*大约为9.7℃,参考时间t*为10 s。弛豫时间τT,τq选取的标准为10~30 s,组织长度l一般取为5~10 cm。本研究得到的温度随距离分布的图像与参考文献 [
图1. (a)不同的热流弛豫时间τq下(τT= 1.6);(b)不同的温度梯度弛豫时间τT下(τq= 1.6),温度随时间的变化。(α = 1, β = 1, f = 6 × 103Hz, H = 1000 A/m)
图2. (a)不同的α下(β = 1);(b)不同的β下(α = 1),温度随时间的变化。(τq= 1.6 s, τT= 1.6 s, f = 6 × 103Hz, H = 1000 A/m)
图3. (a)不同的磁场强度H (f = 40 × 103Hz)下;(b)不同的交变磁场频率 f (H = 1000 A/m)下,温度随时间的变化。(α = 1, β = 1, τq= 1.6 s, τT= 1.6 s)
如图1所示,在同一τT下,随着热流弛豫时间τq的增加,升温速度下降,但都在一段时间后趋近于一个相同的值并保持平稳。反之,τq相同时,在同一时间,随着温度梯度弛豫时间τT的增加温度反而升高。这是因为,τT越大,热的传播扩散越快,温度升高越快。而热流弛豫时间τq越大,表明热流耗散越大,所以温度变低。此外,当τT> τq时,温度曲线会出现一段先升温后略微下降的状态,这是由于弛豫时间的影响导致热量堆积在磁纳米粒子处。
从图2(a)可以看出,在刚开始的时候,随着α的增加,相同时刻对应的温度下降,即温度趋于平稳的时间延长。不同的α所对应的的平稳状态的温度是大致相同的。从图2(b)中可以看出,与α类似,不同的β对应相同的平稳温度,且β变化并不会延长温度达到最高点的时间。值得注意的是,当α和β的差距足够大时(α = 1, β = 0.6),温度曲线会在前期出现震荡的情况。
图3描述了不同的磁场强度和磁场频率下x = 0处温度随时间的变化。可以清晰地看到,外加磁场强度和磁场频率都可以有效的改变组织所达到的最终温度。并且,这种改变是幅度较大的。联系前面的分析,我们可以通过调整分数阶导数参数的方式改变温度增长的速度,通过调整外加磁场的频率和强度改变最终达到的温度,并在具体问题中得到应用。
本文利用双相滞后模型研究了磁纳米粒子的热传导问题,并引入分数阶导数对温度分布函数进行求解,分析了分数阶导数系数对温度分布函数的影响,发现α对温度的影响较大,β对温度的影响较小,且β变到一定程度会出现波动现象。我们还分析了热流弛豫时间τq和温度梯度弛豫时间τT对温度分布函数的影响,发现在相同的变化时间,随着τq增加,温度降低,而τT增加,则温度升高。同时,我们对交变磁场的磁场强度和磁场频率也做了分析,证实了增加磁场强度或提高交变磁场频率,也会相应地使温度升高。这些结果对实验设计和理论发展具有较好的促进作用。
赵娟霞,菅永军. 以磁纳米粒子为热源的分数阶双相滞后热传输Fractional Order Dual-Phase-Lag Heat Transfer with Magnetic Nanoparticles as Heat Source[J]. 应用数学进展, 2020, 09(12): 2308-2316. https://doi.org/10.12677/AAM.2020.912270
https://doi.org/10.3109/02656739709023559
https://doi.org/10.1002/pros.20213
https://doi.org/10.1002/pros.20324
https://doi.org/10.1039/C5RA04553C
https://doi.org/10.1016/j.aej.2016.03.022
https://doi.org/10.1016/j.ijheatmasstransfer.2008.08.025
https://doi.org/10.1088/1674-1056/24/3/034401
https://doi.org/10.1080/17455030.2020.1842552
https://doi.org/10.1115/1.1844540
https://doi.org/10.1016/j.jtherbio.2015.02.008
https://doi.org/10.1016/j.ijthermalsci.2017.11.005
https://doi.org/10.1152/jappl.1948.1.2.93
https://doi.org/10.1115/1.1478062
https://doi.org/10.2514/3.9007
https://doi.org/10.1109/8.489308
https://doi.org/10.1007/BF03183841
https://doi.org/10.1007/BF02877067
https://doi.org/10.1007/BF02484269
https://doi.org/10.1016/j.ijnonlinmec.2004.07.016
https://doi.org/10.1063/1.1850409
https://doi.org/10.1016/j.physleta.2006.08.054
https://doi.org/10.1007/s003970050138
https://doi.org/10.1016/j.euromechflu.2015.06.016
https://doi.org/10.1016/j.jmmm.2017.08.074
https://doi.org/10.1016/j.physa.2016.06.135
https://doi.org/10.1152/jappl.1998.85.1.35
https://doi.org/10.1016/S0304-8853(02)00706-0