颤振严重制约铣削效率与质量。作为铣削稳定性主要分析方法的时域分析方法可归纳为两大类:一是通过建立铣削动力学模型,求解铣削动力学方程,利用时域稳定性判据确定铣削过程的稳定性;二是直接采用传感器及其辅助装置拾取切削力、振动等时域信号,通过对时域信号使用某种稳定性判据,以确定铣削过程的稳定性。首先介绍了铣削过程动力学建模的相关技术;其次,分析了铣削过程稳定性时域分析的几种方法;再次,从信号拾取、颤振识别与抑制等方面对颤振在线监测与控制技术进行了阐述;最后总结全文,得出了一些对实际工程应用有指导性的结论。 Chatter seriously restricts milling efficiency and quality. As one of the main analysis methods of milling stability, time domain analysis method can be divided into two categories: one is to estab-lish the milling dynamic model, solve the milling dynamic equation, and determine the stability of the milling process by using the stability criteria in time domain; the other is to directly use sensors and auxiliary devices to pick up the time-domain signals such as cutting force and vibration, and then use some stability to the time-domain signals to determine the stability of milling process. Firstly, the related technology of dynamic modeling of milling process is introduced; secondly, several methods of time domain analysis of milling process stability are analyzed; thirdly, chatter on-line monitoring and control technology is elaborated from the aspects of signal picking, chatter identification and suppression; finally, the whole paper is summarized and some guiding conclusions for practical engineering application are obtained.
铣削过程,颤振稳定性,时域分析,颤振在线监测, Milling Process
Chatter Stability
Time Domain Analysis
Online Chatter Monitoring
摘要
Chatter seriously restricts milling efficiency and quality. As one of the main analysis methods of milling stability, time domain analysis method can be divided into two categories: one is to establish the milling dynamic model, solve the milling dynamic equation, and determine the stability of the milling process by using the stability criteria in time domain; the other is to directly use sensors and auxiliary devices to pick up the time-domain signals such as cutting force and vibration, and then use some stability to the time-domain signals to determine the stability of milling process. Firstly, the related technology of dynamic modeling of milling process is introduced; secondly, several methods of time domain analysis of milling process stability are analyzed; thirdly, chatter on-line monitoring and control technology is elaborated from the aspects of signal picking, chatter identification and suppression; finally, the whole paper is summarized and some guiding conclusions for practical engineering application are obtained.
Keywords:Milling Process, Chatter Stability, Time Domain Analysis, Online Chatter Monitoring
半离散求解法最早由Insperger等 [
18
] 提出。它将延时周期T划分为m个时间间隔t,即T = mt (其中m为正整数)。在每一个区段 k τ ≤ t ≤ ( k + 1 ) τ 内, ( k = 0 , ⋯ , m ) ,以 x k = x ( k τ ) 为初始条件,用 x ( t − T ) 对每个时间间隔内的时滞项做加权平均,对周期系数B(t)矩阵做零阶平均,从而获得一个周期内系统的状态空间表达式。在此基础上构造转移矩阵,再使用Floquet理论对传递矩阵进行判稳,进而确定当前切削条件是否稳定 [
11
] [
12
]。
李忠群,刘鸿志,刘 学,段林升,刘 浪. 铣削过程稳定性时域分析方法研究进展Research Progress of Chatter Stability Analysis for Milling Process in Time-Domain[J]. 机械工程与技术, 2020, 09(06): 618-627. https://doi.org/10.12677/MET.2020.96066
参考文献References
杨毅青, 徐东东. 铣削力建模技术研究及实验对比[J]. 中国科技论文, 2015(4): 391-393.
杨毅青, 张斌, 刘强. 铣削建模中多种切削力模型的分析比较[J]. 振动工程学报, 2015, 28(1): 82-90.
Zhang, X., Zhang, J. and Pang, B. (2016) An Efficient Approach for Milling Dynamics Modeling and Analysis with Varying Time Delay and Cutter Runout Effect. The International Journal of Advanced Manufacturing Technology, 87, 3373-3388. https://doi.org/10.1007/s00170-016-8671-8
Jung, J., Ngo, C. and Son (2016) Nonlinear Modeling and Dy-namic Simulation Using Bifurcation and Stability Analyses of Regenerative Chatter of Ball-End Milling Process. Mathematical Problems in Engineering, 2016, Article ID: 4368680. https://doi.org/10.1155/2016/4368680
Zuperl, U., Cus, F. and Mursec, B. (2006) A Generalized Neural Network Model of Ball-End Milling Force System. Journal of Materials Processing Technology, 175, 98-108. https://doi.org/10.1016/j.jmatprotec.2005.04.036
郑金兴. 粒子群优化人工神经网络在高速铣削力建模中的应用[J]. 计算机集成制造系统, 2008, 14(9): 1710-1716.
Huang, C.Y. and Wang, J.J.J. (2007) Mechanistic Modeling of Process Damping in Peripheral Milling. Journal of Manufacturing Science and Engineering, 129, 397-406. https://doi.org/10.1115/1.2335857
Sellmeier, V. and Denkena, B. (2012) High Speed Process Damping in Milling. CIRP Journal of Manufacturing Science and Technology, 5, 8-19. https://doi.org/10.1016/j.cirpj.2011.12.001
Wu, D.W. (1989) A New Approach of Formulating the Transfer Function for Dynamic Cutting Process. Journal of Manufacturing Science and Engineering, 111, 37-47. https://doi.org/10.1115/1.3188730
Engin, S. and Altintas, Y. (2001) Mechanics and Dynamics of General Milling Cutters. Part I: Helical End Mills. International Journal of Machine Tools and Manufacture, 41, 2195-2212. https://doi.org/10.1016/S0890-6955(01)00045-1
Catania, G. and Mancinelli, N. (2009) A Coupled Theoret-ical-Experimental Dynamical Model for Chatter Prediction in Milling Processes. International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 48982, 175-184. https://doi.org/10.1115/DETC2009-86216
Gao, S.H., Meng, G. and Long, X.H. (2011) Study of Milling Stability with Hertz Contact Stiffness of Ball Bearings. Archive of Applied Mechanics, 81, 1141-1151. https://doi.org/10.1007/s00419-010-0475-y
Li, H.Z, Li, X.P. and Chen, X.Q. (2003) A Novel Chatter Stability Criterion for the Modelling and Simulation of the Dynamic Milling Process in the Time Domain. The International Journal of Advanced Manufacturing Technology, 22, 619-625. https://doi.org/10.1007/s00170-003-1562-9
Li, Z.Q. and Liu, Q. (2008) Solution and Analysis of Chatter Stability for End Milling in the Time-Domain. Chinese Journal of Aeronautics, 21, 169-178. https://doi.org/10.1016/S1000-9361(08)60022-9
Campomanes, M.L. and Altintas, Y. (2003) An Improved Time Domain Simulation for Dynamic Milling at Small Radial Immersions. Journal of Manufacturing Science & Engineering, 125, 416-422. https://doi.org/10.1115/1.1580852
刘强, 李忠群. 数控铣削加工过程仿真与优化——建模、算法与工程应用[M]. 北京: 航空工业出版社, 2011.
Insperger, T. and Stépán, G. (2004) Updated Semi-Discretization Method for Periodic Delay-Differential Equations with Discrete Delay. International Journal for Numerical Methods in Engineering, 61, 117-141. https://doi.org/10.1002/nme.1061
Henninger, C. and Eberhard, P. (2008) Improving the Computational Effi-ciency and Accuracy of the Semi-Discretization Method for Periodic Delay-Differential Equations. European Journal of Mechanics A Solids, 27, 975-985. https://doi.org/10.1016/j.euromechsol.2008.01.006
Jiang, S., Sun, Y., and Yuan, X. (2017) A Second-Order Semi-Discretization Method for the Efficient and Accurate Stability Prediction of Milling Process. The International Journal of Advanced Manufacturing Technology, 92, 583-595. https://doi.org/10.1007/s00170-017-0171-y
Huang, T., Zhang, X. and Zhang, X. (2013) An Efficient Linear Approximation of Acceleration Method for Milling Stability Prediction. International Journal of Machine Tools and Manufacture, 74, 56-64. https://doi.org/10.1016/j.ijmachtools.2013.07.006
李忠群, 彭岳荣, 夏磊, 朱帆. 基于三阶龙格库塔法的铣削稳定性半解析法预测[J]. 航空制造技术, 2016(Z2): 30-33.
丁烨. 铣削动力学——稳定性分析方法与应用[D]: [博士学位论文]. 上海: 上海交通大学, 2011.
Liu, Y., Zhang, D. and Wu, B. (2012) An Efficient Full-Discretization Method for Prediction of Milling Stability. International Journal of Machine Tools and Manufacture, 63, 44-48. https://doi.org/10.1016/j.ijmachtools.2012.07.008
Quo, Q., Sun, Y. and Jiang, Y. (2012) On the Accurate Calculation of Milling Stability Limits Using Third-Order Full-Discretization Method. International Journal of Machine Tools and Manufacture, 62, 61-66. https://doi.org/10.1016/j.ijmachtools.2012.05.001
Ozoegwu, C.G., Omenyi, S.N. and Ofochebe, S.M. (2015) Hyper-Third Order Full-Discretization Methods in Milling Stability Prediction. International Journal of Machine Tools and Manufacture, 92, 1-9. https://doi.org/10.1016/j.ijmachtools.2015.02.007
Yang, W.A., Huang, C. and Cai, X.L. (2020) Effective and Fast Prediction of Milling Stability Using a Precise Integration-Based Third-Order Full-Discretization Method. The International Journal of Advanced Manufacturing Technology, 106, 4477-4498. https://doi.org/10.1007/s00170-019-04790-z
Qin, C., Tao, J. and Liu, C. (2018) A Predictor-Corrector-Based Holistic-Discretization Method for Accurate and Efficient Milling Stability Analysis. The International Journal of Ad-vanced Manufacturing Technology, 96, 2043-2054. https://doi.org/10.1007/s00170-018-1727-1
Bayly, P.V., Halley, J.E., Mann, B.P. and Davies, M.A. (2003) Stability of Interrupted Cutting by Temporal Finite Element Analysis. Journal of Manufacturing Science & Engineering, 125, 220-225. https://doi.org/10.1115/1.1556860
姜燕, 郭强, 赵波. 铣削稳定性预测的时间有限元法[J]. 河南理工大学学报(自然科学版), 2016, 35(5): 672-676.
Peng, C., Wang, L. and Liao, T.W. (2015) A New Method for the Prediction of Chatter Stability Lobes Based on Dynamic Cutting Force Simulation Model and Support Vector Machine. Journal of Sound and Vibration, 354, 118-131. https://doi.org/10.1016/j.jsv.2015.06.011
罗作国. 切削颤振辨识及主动抑制策略的研究[D]: [硕士学位论文]. 武汉: 华中科技大学, 2007.
胡国志, 叶文华, 李佳璇, 等. 铣削颤振在线智能控制方法研究[J]. 制造技术与机床, 2017(6): 76-79, 84.
Pérez-Canales, D., Vela-Martínez, L. and Jáuregui-Correa, J.C. (2012) Analysis of the Entropy Randomness Index for Machining Chatter Detection. International Journal of Machine Tools and Man-ufacture, 62, 39-45. https://doi.org/10.1016/j.ijmachtools.2012.06.007
Altintas, Y. and Chan, P.K. (1992) In-Process Detection and Suppression of Chatter in Milling. International Journal of Machine Tools and Manufacture, 32, 329-347. https://doi.org/10.1016/0890-6955(92)90006-3
Schmitz, T.L., Medicus, K. and Dutterer, B. (2002) Exploring Once-per-Revolution Audio Signal Variance as a Chatter Indicator. Machining Science and Technology, 6, 215-233. https://doi.org/10.1081/MST-120005957
Delio, T., Tlusty, J. and Smith, S. (1992) Use of Audio Signals for Chatter Detection and Control. Journal of Manufacturing Science & Engineering, 114, 146. https://doi.org/10.1115/1.2899767
Smith, S. and Tlusty, J. (1990) Update on High-Speed Milling Dynamics. https://doi.org/10.1115/1.2899557
Smith, S. and Tlusty, J. (1990) Update on High-Speed Milling Dynamics. Journal of Engineering for Industry, 112, 142-149. https://doi.org/10.1115/1.2899557
Wang, L. and Liang, M. (2009) Chatter Detection Based on Probability Distribution of Wavelet Modulus Maxima. Robotics and Comput-er-Integrated Manufacturing, 25, 989-998. https://doi.org/10.1016/j.rcim.2009.04.011
Li, K., He, S. and Luo, B. (2017) Online Chatter Detection in Milling Process Based on VMD and Multiscale Entropy. The International Journal of Advanced Manufacturing Technology, 105, 5009-5022. https://doi.org/10.1007/s00170-019-04478-4
Yang, K., Wang, G. and Dong, Y. (2019) Early Chatter Identi-fication Based on an Optimized Variational Mode Decomposition. Mechanical Systems and Signal Processing, 115, 238-254. https://doi.org/10.1016/j.ymssp.2018.05.052
Ji, Y., Wang, X. and Liu, Z. (2017) EEMD-Based Online Milling Chatter Detection by Fractal Dimension and Power Spectral Entropy. The International Journal of Ad-vanced Manufacturing Technology, 92, 1185-1200. https://doi.org/10.1007/s00170-017-0183-7
Wan, S., Li, X. and Chen, W. (2018) Investigation on Milling Chatter Identification at Early Stage with Variance Ratio and Hilbert-Huang Transform. The International Journal of Advanced Manufacturing Technology, 95, 3563-3573. https://doi.org/10.1007/s00170-017-1410-y
任静波, 孙根正, 陈冰. 基于小波包能谱熵的铣削颤振监测方法[J]. 工具技术, 2014(11): 76-79.
Ji, Y., Wang, X. and Liu, Z. (2918) Early Milling Chatter Identification by Improved Empirical Mode Decomposition and Multi-Indicator Synthetic Evaluation. Journal of Sound and Vibration, 433, 138-159. https://doi.org/10.1016/j.jsv.2018.07.019
马振. 铣削加工过程中振动状态的识别与溯源[D]: [硕士学位论文]. 武汉: 华中科技大学, 2017.
于英华, 徐兴强, 徐平. 切削颤振的在线监测与控制研究现状分析[J]. 振动与冲击, 2007(1): 130-132+135+166.
杨毅青, 谢日成, 徐东东. 旋转变刚度阻尼器抑制薄壁零件铣削颤振[J]. 振动与冲击, 2018, 37(2): 72-75, 84.
闫占辉, 勾治践, 于骏一. 变速铣削的综合试验分析[J]. 试验技术与试验机, 2002, 42(1): 51-52.
宋春雷, 彭志科. 变速铣削稳定性预测的整体离散算法[J]. 噪声与振动控制, 2016, 36(6): 7-11+31.
于骏一, 吴博达, 杨国辉. 变速铣削工艺的试验研究[J]. 机械制造, 1993(9): 12-13.