环境持久性自由基(Environmental Persistent Free Radicals, EPFRs)是一种新型且具有潜在环境风险的物质。与短寿命自由基相比,其具有较强的环境持久性,可以在介质中长期存在,甚至不消失。它可以破坏人体的正常细胞,诱发DNA突变,导致肺功能障碍,加快人体衰老速度,提高患病的几率。同时,含有EPFRs的活性物质还可能对污染物有直接或间接的降解作用。目前对于EPFRs的研究尚处于起步阶段。本文讲述了EPFRs的形成机制、测试方法、半衰期、存在介质、影响因素以及催化降解作用,重点论述了判定EPFRs类型的方法以及其形成路径——前驱体分子与过渡金属之间的电子得失,其次论述了环境持久性自由基在固体、液体和气体介质中均存在,最后展望了EPFRs的研究前景,包括反应条件对EPFRs产量和类型的影响以及EPFRs对有机或无机污染物转化的影响。 Environmental persistent free radicals (EPFRs) are a new type of substances with potential environmental risks. Compared with short-lived free radicals, they are found to stay in the medium for a long time, and even do not disappear because of their strong environmental persistence. They can damage the normal cells of the human body, induce DNA mutations, lead to pulmonary dysfunction, accelerate the aging of humans and increase the risk of disease. At the same time, the active substances containing EPFRs may degrade pollutants directly or indirectly. However, the research about them is still in its infancy. The formation mechanism, testing methods, half-life, existing media, influencing factors and catalytic degradation of EPFRs are described in this paper. It focuses on the determination method of EPFRs type and the formation path of EPFRs—electronic gain and loss between precursor molecule and transition metal. Secondly, the existences of EPFRs in solid, liquid and gas are discussed. Finally, the future research prospects of EPFRs are prospected, including the influence of reaction conditions on the yield and type of EPFRs and the influence of EPFRs on the transformation of organic or inorganic pollutants.
环境持久性自由基,形成机制,存在介质,影响因素,催化降解, Environmental Persistent Free Radicals (EPFRs)
Generation Mechanism
Existence Medium
Influencing Factors
Catalytic Degradation
摘要
Environmental persistent free radicals (EPFRs) are a new type of substances with potential environmental risks. Compared with short-lived free radicals, they are found to stay in the medium for a long time, and even do not disappear because of their strong environmental persistence. They can damage the normal cells of the human body, induce DNA mutations, lead to pulmonary dysfunction, accelerate the aging of humans and increase the risk of disease. At the same time, the active substances containing EPFRs may degrade pollutants directly or indirectly. However, the research about them is still in its infancy. The formation mechanism, testing methods, half-life, existing media, influencing factors and catalytic degradation of EPFRs are described in this paper. It focuses on the determination method of EPFRs type and the formation path of EPFRs—electronic gain and loss between precursor molecule and transition metal. Secondly, the existences of EPFRs in solid, liquid and gas are discussed. Finally, the future research prospects of EPFRs are prospected, including the influence of reaction conditions on the yield and type of EPFRs and the influence of EPFRs on the transformation of organic or inorganic pollutants.
朱雨寒,魏 佳,刘晓慧,刘亦陶,李 军. 环境持久性自由基的特征及环境化学行为研究进展Research Progress on Characteristics and Environmental Chemical Behavior of Environmental Persistent Free Radicals[J]. 化学工程与技术, 2020, 10(06): 462-475. https://doi.org/10.12677/HJCET.2020.106060
参考文献References
Lezna, R.O., Tacconi, N.R.D., Centeno, S.A., et al. (1991) Adsorption of Phenol on Gold as Studied by Capacitance and Reflectance Measurements. Langmuir, 7, 1241-1246. https://doi.org/10.1021/la00054a037
陈宁. 自由基的化学及与人类疾病的关系[J]. 继续医学教育学报, 1990, 4(2): 101-105.
朱润芝, 李京敬, 谢超, 等. 过氧化作用与肝脏疾病[J]. 世界华人消化杂志, 2010, 18(11): 1134-1140.
丁亚芳. 云南年青褐煤黄腐酸对自由基的影响及其酒精性肝损伤保护作用研究[D]: [硕士学位论文]. 昆明: 昆明理工大学, 2014.
利国. 自由基——人类健康的真正敌人有超过100种疾病与自由基产生过量有关[J]. 养生月刊, 2007, 28(4): 477-478.
李德才, 何晓玉, 雷辉. 自由基导致细胞衰老进而导致机体衰老的作用机制[J]. 中华现代临床医学杂志, 2009, 7(9): 783-787.
Gomberg, M. (1900) An Instance of Trivalent Carbon Triphenylmethyl. Journal of the American Chemical Society, 22, 757-771. https://doi.org/10.1021/ja02049a006
Paneth, F. and Hofeditz, W. (1929) Über die Darstellung von freiem Methyl. Berichte der Deutschen Chemischen Gesellschaft (A and B Series), 62, 1335-1347. https://doi.org/10.1002/cber.19290620537
Harman, D. (1956) A Theory Based on Free Radical and Radiation Chemistry. Journal of Gerontology, 11, 298-300. https://doi.org/10.1093/geronj/11.3.298
Leighton, P.A. (1961) Photochemistry of Air Pollution. American Journal of Public Health & the Nations Health, 52, 878.
Ingram, D.J.E., Tapley, J.G., Jackson, R., et al. (1954) Paramagnetic Resonance in Carbonaceous Solids. Nature, 174, 797-798. https://doi.org/10.1038/174797a0
Uebersfeld, J., Étienne, A. and Combrisson, J. (1954) Paramagnetic Resonance, a New Property of Coal-Like Materials. Nature, 174, 614. https://doi.org/10.1038/174614a0
Lyons, M.J., Gibson, J.F. and Ingram, D.J.E. (1958) Free-Radicals Produced in Cigarette Smoke. Nature, 181, 1003-1004. https://doi.org/10.1038/1811003a0
Dellinger, B., Lomnicki, S., Khachatryan, L., et al. (2007) Formation and Stabilization of Persistent Free Radicals. Proceedings of the Combustion Institute, 31, 521-528. https://doi.org/10.1016/j.proci.2006.07.172
Valavanidis, A., Iliopoulos, N., Gotsis, G., et al. (2008) Persistent Free Radicals, Heavy Metals and PAHs Generated in Particulate Soot Emissions and Residue Ash from Controlled Combustion of Common Types of Plastic. Journal of Hazardous Materials, 156, 277-284. https://doi.org/10.1016/j.jhazmat.2007.12.019
阮秀秀, 孙万雪, 程玲, 等. 环境持久性自由基的研究进展[J]. 上海大学学报(自然科学版), 2016, 22(2): 114-121.
韩林, 陈宝梁. 环境持久性自由基的产生机理及环境化学行为[J]. 化学进展, 2017, 29(9): 1008-1020.
杨芳. 生物质热解过程中持久性自由基的产生过程及机理[D]: [硕士学位论文]. 昆明: 昆明理工大学, 2016.
王朋, 吴敏, 李浩, 等. 环境持久性自由基对有机污染物环境行为的影响研究进展[J]. 化工进展, 2017, 36(11): 4243-4249.
Truong, H., Lomnicki, S.M. and Dellinger, B. (2010) Potential for Misidentification of Environmentally Persistent Free Radicals as Molecular Pollutants in Particulate Matter. Environmental Science & Technology, 44, 1933-1939. https://doi.org/10.1021/es902648t
李芳柏, 王旭刚, 周顺桂, 等. 红壤胶体铁氧化物界面有机氯的非生物转化研究进展[J]. 生态环境, 2006, 15(5): 1343-1351.
Qian, R.Z., Zhang, S.M., Peng, C., et al. (2020) Characteristics and Potential Exposure Risks of Environmentally Persistent Free Radicals in PM2.5 in the Three Gorges Reservoir Area, Southwestern China. Chemosphere, 252, Article ID: 126425. https://doi.org/10.1016/j.chemosphere.2020.126425
Dela Cruz, A.L.N., Gehling, W., Lomnicki, S., et al. (2011) Detection of Environmentally Persistent Free Radicals at a Superfund Wood Treating Site. Environmental Science & Technology, 45, 6356-6365. https://doi.org/10.1021/es2012947
Jezierski, A., Czechowski, F., Jerzykiewicz, M., et al. (2000) Electron Paramagnetic Resonance (EPR) Studies on Stable and Transient Radicals in Humic Acids from Compost, Soil, Peat and Brown Coal. Spectrochimica Acta Part A: Molecular & Biomolecular Spectroscopy, 56, 379-385. https://doi.org/10.1016/S1386-1425(99)00249-8
Pryor, W.A., Prier, D.G. and Church, D.F. (1983) Electron-Spin Resonance Study of Mainstream and Sidestream Cigarette Smoke Nature of the Free Radicals in Gas-Phase Smoke and in Cigarette Tar. Environmental Health Perspectives, 47, 345-355. https://doi.org/10.1289/ehp.8347345
Maskos, Z., Khachatryan, L., Cueto, R., et al. (2005) Radicals from the Pyrolysis of Tobacco. Energy & Fuels, 19, 791-799. https://doi.org/10.1021/ef040088s
Balakrishna, S., Lomnicki, S., McAvey, K.M., et al. (2009) Environmentally Persistent Free Radicals Amplify Ultrafine Particle Mediated Cellular Oxidative Stress and Cytotoxicity. Particle and Fibre Toxicology, 6, 3-14. https://doi.org/10.1186/1743-8977-6-11
Fahmy, B., Ding, L., You, D., et al. (2010) In Vitro and in Vivo Assessment of Pulmonary Risk Associated with Exposure to Combustion Generated Fine Particles. Environmental Toxicology and Pharmacology, 29, 173-182. https://doi.org/10.1016/j.etap.2009.12.007
Dellinger, B., Pryor, W.A., Cueto, R., et al. (2001) Role of Free Radicals in the Toxicity of Airborne Fine Particulate Matter. Chemical Research in Toxicology, 14, 1371-1377. https://doi.org/10.1021/tx010050x
Maskos, Z., Khachatryan, L., Dellinger, B. (2005) Precursors of Radicals in Tobacco Smoke and the Role of Particulate Matter in Forming and Stabilizing Radicals. Energy & Fuels, 19, 2466-2473. https://doi.org/10.1021/ef058018o
Cormier, S.A., Lomnicki, S., Backes, W., et al. (2006) Origin and Health Impacts of Emissions of Toxic By-Products and Fine Particles from Combustion and Thermal Treatment of Hazardous Wastes and Materials. Environmental Health Perspectives, 114, 810-817. https://doi.org/10.1289/ehp.8629
Zavoisky, E. (1945) Spin-Magnetic Resonance in Paramagnetics. Journal of Physics USSR, 9, 211-245.
Kelley, M.A., Hebert, V.Y., Thibeaux, T.M., et al. (2013) Model Combustion-Generated Particulate Matter Containing Persistent Free Radicals Redox Cycle to Produce Reactive Oxygen Species. Chemical Research in Toxicology, 26, 1862-1871. https://doi.org/10.1021/tx400227s
Lomnicki, S.M., Truong, H., Vejerano, E., et al. (2008) Copper Oxide-Based Model of Persistent Free Radical Formation on Combustion-Derived Particulate Matter. Environmental Science & Technology, 42, 4982-4988. https://doi.org/10.1021/es071708h
程正奇. 天然有机质负载对邻苯二酚在二氧化硅—赤铁矿表面降解的影响[D]: [硕士学位论文]. 昆明: 昆明理工大学, 2016.
Dela Cruz, A.L.N., Cook, R.L., Lomnicki, S.M., et al. (2012) Effect of low Temperature Thermal Treatment on Soils Contaminated with Pentachlorophenol and Environmentally Persistent Free Radicals. Environmental Science & Technology, 46, 5971-5978. https://doi.org/10.1021/es300362k
Vejerano, E., Lomnicki, S. and Dellinger, B. (2011) Formation and Stabilization of Combustion-Generated Environmentally Persistent Free Radicals on an Fe(III)2O3 Silica Surface. Environmental Science & Technology, 45, 589-594. https://doi.org/10.1021/es102841s
王天娇, 陈彤, 詹明秀, 等. 废弃物焚烧飞灰中持久性自由基与二噁英及金属的关联探究[J]. 环境科学, 2016, 37(3): 1163-1170.
吴爱萍. 煤及其热解产物中自由基的分析[D]: [博士学位论文]. 上海: 华东理工大学, 2012.
郑榕萍. EPR定量测定煤中自由基的方法及煤液化机理的研究[D]: [硕士学位论文]. 上海: 华东理工大学, 2011.
刘国根, 邱冠周, 胡善亭, 等. 煤的ESR波谱研究[J]. 波谱学杂志, 1999, 16(2): 177-180.
Valentin, C.D., Neyman, K.M., Risse, T., et al. (2006) Density-Functional Model Cluster Studies of EPR g Tensors of Centers on the Surface of MgO. The Journal of Chemical Physics, 124, 044708. https://doi.org/10.1063/1.2161190
Barclay, L.R.C. and Vinqvist, M.R. (1994) Membrane Peroxidation: Inhibiting Effects of Water-Soluble Antioxidants on Phospholipids of Different Charge Types. Free Radical Biology & Medicine, 16, 779-788. https://doi.org/10.1016/0891-5849(94)90193-7
Jezierski, A., Skrzypek, G., Jezierski, P., et al. (2008) Electron Paramagnetic Resonance (EPR) and Stable Isotope Records of Paleoenvironmental Conditions during Peat Formation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 69, 1311-1316. https://doi.org/10.1016/j.saa.2007.09.024
Christoforidis, K.C., Un, S. and Deligiannakis, Y. (2007) High-Field 285 GHz Electron Paramagnetic Resonance Study of Indigenous Radicals of Humic Acids. The Journal of Physical Chemistry A, 111, 11860-11866. https://doi.org/10.1021/jp0717692
Pryor, W.A., Stone, K., Zang, L.-Y., et al. (1998) Fractionation of Aqueous Cigarette Tar Extracts Fractions That Contain the Tar Radicals Cause DNA Damage. Chemical Research in Toxicology, 11, 441-448. https://doi.org/10.1021/tx970159y
Jia, H.Z., Nulaji, G., Gao, H.W., et al. (2016) Formation and Stabilization of Environmentally Persistent Free Radicals Induced by the Interaction of Anthracene with Fe(III)-Modified Clays. Environmental Science & Technology, 50, 6310-6319. https://doi.org/10.1021/acs.est.6b00527
Hales, B.J. (1976) Immobilized Radicals. I. Principal Electron Spin Resonance Parameters of the Benzosemiquinone Radical. Chemischer Informationsdienst, 7, 5993-5997. https://doi.org/10.1002/chin.197601035
Qin, C., Troy, D., Shang, C., et al. (2015) Surface Catalyzed Oxidative Oligomerization of 17β-Estradiol by Fe3+-Saturated Montmorillonite. Environmental Science & Technology, 49, 956-964. https://doi.org/10.1021/es504815t
Eastman, M.P., Patterson, D.E. and Pannell, K.H. (1984) Reaction of Benzene with Cu(II)- and Fe(III)-Exchanged Hectorites. Clays and Clay Minerals, 32, 327-333. https://doi.org/10.1346/CCMN.1984.0320411
Maskos, Z. and Dellinger, B. (2008) Radicals from the Oxidative Pyrolysis of Tobacco. Energy & Fuels, 22, 1675-1679. https://doi.org/10.1021/ef7006694
Maskos, Z. and Dellinger, B. (2008) Formation of the Secondary Radicals from the Aging of Tobacco Smoke. Energy & Fuels, 22, 382-388. https://doi.org/10.1021/ef700446v
Boyd, S.A. and Mortland, M.M. (1985) Dioxin Radical Formation and Polymerization on Cu(II)-Smectite. Nature, 316, 532-535. https://doi.org/10.1038/316532a0
Neta, P. and Fessenden, R.W. (1974) Hydroxyl Radical Reactions with Phenols and Anilines as Studied by Electron-Spin Resonance. The Journal of Physical Chemistry, 78, 523-529. https://doi.org/10.1021/j100598a013
Li, H., Guo, H., Pan, B., et al. (2016) Catechol Degradation on Hematite/Silica-Gas Interface as Affected by Gas Composition and the Formation of Environmentally Persistent Free Radicals. Scientific Reports, 6, Article No. 24494. https://doi.org/10.1038/srep24494
王婷, 李浩, 郭惠莹, 等. 邻苯二酚-Fe2O3和邻苯二酚-CuO体系中持久性自由基的形成机制及特征[J]. 环境化学, 2016, 35(3): 423-429.
Vejerano, E., Lomnicki, S.M. and Dellinger, B. (2012) Formation and Stabilization of Combustion-Generated, Environmentally Persistent Radicals on Ni(II)O Supported on a Silica Surface. Environmental Science & Technology, 46, 9406-9411. https://doi.org/10.1021/es301136d
Khachatryan, L., Adounkpe, J., Maskos, Z., et al. (2006) Formation of Cyclopentadienyl Radical from the Gas-Phase Pyrolysis of Hydroquinone, Catechol, and Phenol. Environmental Science & Technology, 40, 5071-5076. https://doi.org/10.1021/es051878z
Farquar, G.R., Alderman, S.L., Poliakoff, E.D., et al. (2003) X-Ray Spectroscopic Studies of the High Temperature Reduction of Cu(II)O by 2-Chlorophenol on a Simulated Fly Ash Surface. Environmental Science & Technology, 37, 931-935. https://doi.org/10.1021/es020838h
Lomnicki, S. and Dellinger, B. (2003) A Detailed Mechanism of the Surface-Mediated Formation of PCDD/F from the Oxidation of 2-Chlorophenol on CuO/Silica Surface. The Journal of Physical Chemistry A, 107, 4387-4395. https://doi.org/10.1021/jp026045z
和文静. 煤和生物质热解及煤溶剂抽提过程中自由基反应行为研究[D]: [博士学位论文]. 北京: 北京化工大学, 2015.
Li, H., Pan, B., Liao, S.H., et al. (2014) Formation of Environmentally Persistent Free Radicals as the Mechanism for Reduced Catechol Degradation on Hematite-Silica Surface under UV Irradiation. Environmental Pollution, 188, 153-158. https://doi.org/10.1016/j.envpol.2014.02.012
Giannakopoulos, E., Drosos, M. and Deligiannakis, Y. (2009) A Humic-Acid-Like Polycondensate Produced with No Use of Catalyst. Journal of Colloid and Interface Science, 336, 59-66. https://doi.org/10.1016/j.jcis.2009.03.037
Nwosu, U.G., Roy, A., Dela Cruz, A.L.N., et al. (2016) Formation of Environmentally Persistent Free Radical (EPFR) in Iron(III) Cation-Exchanged Smectite Clay. Environmental Science: Processes & Impacts, 18, 42-50. https://doi.org/10.1039/C5EM00554J
Govindaraj, N., Mortland, M.M. and Boyd, S.A. (1987) Single Electron Transfer Mechanism of Oxidative Dechlorination of 4-Chloroanisole on Copper(II)-Smectite. Environmental Science & Technology, 21, 1119-1123. https://doi.org/10.1021/es00164a014
Boyd, S.A. and Mortland, M.M. (1986) Radical Formation and Polymerization of Chlorophenols and Chloroanisole on Copper(II)-Smectite. Environmental Science & Technology, 20, 1056-1058. https://doi.org/10.1021/es00152a017
Jiang, B., Dai, D.J., Yao, Y.Y., et al. (2016) The Coupling of Hemin with Persistent Free Radicals Induces a Nonradical Mechanism for Oxidation of Pollutants. Chemical Communications, 52, 9566-9569. https://doi.org/10.1039/C6CC02973F
Kiruri, L.W., Dellinger, B. and Lomnicki, S. (2013) Tar Balls from Deep Water Horizon Oil Spill: Environmentally Persistent Free Radicals (EPFR) Formation during Crude Weathering. Environmental Science & Technology, 47, 4220-4226. https://doi.org/10.1021/es305157w
Valavanidis, A., Fiotakis, K., Bakeas, E., et al. (2005) Electron Paramagnetic Resonance Study of the Generation of Reactive Oxygen Species Catalysed by Transition Metals and Quinoid Redox Cycling by Inhalable Ambient Particulate Matter. Redox Report, 10, 37-51. https://doi.org/10.1179/135100005X21606
Shi, Y.F., Zhu, K.C., Dai, Y.C., et al. (2020) Evolution and Stabilization of Environmental Persistent Free Radicals during the Decomposition of Lignin by Laccase. Chemosphere, 248, Article ID: 125931. https://doi.org/10.1016/j.chemosphere.2020.125931
Vejerano, E., Lomnicki, S. and Dellinger, B. (2012) Lifetime of Combustion-Generated Environmentally Persistent Free Radicals on Zn(II)O and Other Transition Metal Oxides. Journal of Environmental Monitoring, 14, 2803-2806. https://doi.org/10.1039/c2em30545c
Patterson, M.C., Keilbart, N.D., Kiruri, L.W., et al. (2013) EPFR Formation from Phenol Adsorption on Al2O3 and TiO2: EPR and EELS Studies. Chemical Physics, 422, 277-282. https://doi.org/10.1016/j.chemphys.2012.12.003
Sutton, R. and Sposito, G. (2005) Molecular Structure in Soil Humic Substances: The New View. Environmental Science & Technology, 39, 9009-9015. https://doi.org/10.1021/es050778q
Parsons, J.W. (1982) Humus Chemistry: Genesis, Composition, Reactions. Soil Science, 135, 129-130. https://doi.org/10.1097/00010694-198302000-00014
Jezierski, A., Drozd, J., Jerzykiewicz, M., et al. (1998) EPR in the Environmental Control: Copper Complexes and Free Radicals in Soil and Municipal Solid Waste Compost. Applied Magnetic Resonance, 14, 275-282. https://doi.org/10.1007/BF03161894
Wang, X., Li, Y. and Dong, D. (2008) Sorption of Pentachlorophenol on Surficial Sediments: The Roles of Metal Oxides and Organic Materials with Co-Existed Copper Present. Chemosphere, 73, 1-6. https://doi.org/10.1016/j.chemosphere.2008.06.024
Jia, H.Z., Li, L., Chen, H.X., et al. (2015) Exchangeable Cations-Mediated Photodegradation of Polycyclic Aromatic Hydrocarbons (PAHs) on Smectite Surface under Visible Light. Journal of Hazardous Materials, 287, 16-23. https://doi.org/10.1016/j.jhazmat.2015.01.040
Meng, J.J., Smirnova, T.I., Song, X., et al. (2014) Identification of Free Radicals in Pyrolysis Oil and Their Impact on Bio-Oil Stability. RSC Advances, 4, 29840-29846. https://doi.org/10.1039/C4RA02007C
Paul, A., Stosser, R. and Zehl, A. (2006) Nature and Abundance of Organic Radicals in Natural Organic Matter: Effect of pH and Irradiation. Environmental Science & Technology, 40, 5897-5903. https://doi.org/10.1021/es060742d
Grosjean, E., Grosjean, D., Fraser, M.P., et al. (1996) Air Quality Model Evaluation Data for Organics. 3. Peroxyacetyl Nitrate and Peroxypropionyl Nitrate in Los Angeles Air. Environmental Science & Technology, 30, 2704-2714. https://doi.org/10.1021/es9508535
Squadrito, G.L., Cueto, R., Dellinger, B., et al. (2001) Quinoid Redox Cycling as a Mechanism for Sustained Free Radical Generation by Inhaled Airborne Particulate Matter. Free Radical Biology & Medicine, 31, 1132-1138. https://doi.org/10.1016/S0891-5849(01)00703-1
Valavanidis, A., Fiotakis, K., Vlahogianni, T., et al. (2006) Determination of Selective Quinones and Quinoid Radicals in Airborne Particulate Matter and Vehicular Exhaust Particles. Environmental Chemistry, 3, 118-123. https://doi.org/10.1071/EN05089
Dellinger, B., Pryor, W.A., Cueto, R., et al. (2000) The Role of Combustion-Generated Radicals in the Toxicity of PM2.5. Proceedings of the Combustion Institute, 28, 2675-2681. https://doi.org/10.1016/S0082-0784(00)80687-6
Wang, P., Pan, B., Li, H., et al. (2018) The Overlooked Occurrence of Environmentally Persistent Free Radicals in an Area With Low-Rank Coal Burning, Xuanwei, China. Environmental Science & Technology, 52, 1054-1061. https://doi.org/10.1021/acs.est.7b05453
Zhu, Y.H., Wei, J., Liu, Y.T., et al. (2019) Assessing the Effect on the Generation of Environmentally Persistent Free Radicals in Hydrothermal Carbonization of Sewage Sludge. Scientific Reports, 9, Article No. 17092. https://doi.org/10.1038/s41598-019-53781-3
Voncina, E. and Solmajer, T. (2002) Thermolysis of 2,4,6-Trichlorophenol Chemisorbed on Aluminium Oxides as Example of Fly Ash Mediated Surface Catalysis Reaction in PCDD/PCDF Formation. Chemosphere, 46, 1279-1286. https://doi.org/10.1016/S0045-6535(01)00258-2
Grinberg, O.Y., Williams, B.B., Ruuge, A.E., et al. (2007) Oxygen Effects on the EPR Signals from Wood Charcoals Experimental Results and the Development of a Model. The Journal of Physical Chemistry B, 111, 13316-13324. https://doi.org/10.1021/jp072656l
Lehnera, A.F., Hornb, J. and Flesherb, J.W. (2004) Formation of Radical Cations in a Model for the Metabolism of Aromatic Hydrocarbons. Biochemical and Biophysical Research Communications, 322, 1018-1023. https://doi.org/10.1016/j.bbrc.2004.08.017
Rupert, J.P. (1973) Electron Spin Resonance Spectra of Interlamellar Copper(II)-Arene Complexes on Montmorillonite. The Journal of Physical Chemistry, 77, 784-790. https://doi.org/10.1021/j100625a011
Yang, J., Pan, B., Li, H., et al. (2016) Degradation of p-Nitrophenol on Biochars: Role of Persistent Free Radicals. Environmental Science & Technology, 50, 694-700. https://doi.org/10.1021/acs.est.5b04042
Zhao, N., Yin, Z., Liu, F., et al. (2018) Environmentally Persistent Free Radicals Mediated Removal of Cr(VI) from Highly Saline Water by Corn Straw Biochars. Bioresource Technology, 260, 294-301. https://doi.org/10.1016/j.biortech.2018.03.116
Fang, G.D., Gao, J., Liu, C., et al. (2014) Key Role of Persistent Free Radicals in Hydrogen Peroxide Activation by Biochar: Implications to Organic Contaminant Degradation. Environmental Science & Technology, 48, 1902-1910. https://doi.org/10.1021/es4048126
Fang, G.D., Liu, C., Gao, J., et al. (2015) Manipulation of Persistent Free Radicals in Biochar to Activate Persulfate for Contaminant Degradation. Environmental Science & Technology, 49, 5645-5653. https://doi.org/10.1021/es5061512
Fang, G.D., Liu, C., Gao, J., et al. (2014) New Insights into the Mechanism of the Catalytic Decomposition of Hydrogen Peroxide by Activated Carbon: Implications for Degradation of Diethyl Phthalate. Industrial & Engineering Chemistry Research, 53, 19925-19933. https://doi.org/10.1021/ie504184r
Fang, G.D., Gao, J., Dionysiou, D.D., et al. (2013) Activation of Persulfate by Quinones: Free Radical Reactions and Implication for the Degradation of PCBs. Environmental Science & Technology, 47, 4605-4611. https://doi.org/10.1021/es400262n
Fang, G.D., Zhu, C.Y., Dionysiou, D.D., et al. (2015) Mechanism of Hydroxyl Radical Generation from Biochar Suspensions: Implications to Diethyl Phthalate Degradation. Bioresource Technology, 176, 210-217. https://doi.org/10.1016/j.biortech.2014.11.032
Luo, L.S., Wu, D., Dai, D.J., et al. (2017) Synergistic Effects of Persistent Free Radicals and Visible Radiation on Peroxymonosulfate Activation by Ferric Citrate for the Decomposition of Organic Contaminants. Applied Catalysis B: Environmental, 205, 404-411. https://doi.org/10.1016/j.apcatb.2016.12.060