钾离子在植物生长发育的诸多生理生化过程中起重要作用。由于连续的耕种和肥料的不合理使用,土壤钾离子含量日益下降。钾离子的缺乏已经成为限制植物正常生长发育的主要因子之一。因此,培育耐低钾品种已经成为重要的育种目标,耐低钾分子机制的研究和相关基因的挖掘对植物耐低钾品种改良奠定了基础。为了在低钾环境下生存,植物形成了复杂而高效的低钾信号传导途径,并且结合转录和翻译后调节机制协同抵御低钾胁迫。本文结合前人研究,主要从低钾信号的传递、转录水平调控和翻译后调控这三方面讨论了植物耐低钾的分子机制,为植物耐低钾的遗传改良提供了分子理论依据,也为今后的耐低钾研究提供一定的思路。 K+plays crucial roles in diverse physiological and biochemical processes during plant growth and development. Due to irrational use of fertilizer and continuous cultivate, the K+content of soil de-creased gradually. Deficiency of K+content has become one of the major factors limiting the growth and development of plant. Therefore, breeding low K+-resistant varieties has become an important target of current crop breeding, and the excavation of low K+-resistant genes will lay the foundation for the variety improvement of low K+resistance. To survive in low K+ environment, plants have evolved complex and high-efficiency signal transduction pathway, and combined with transcrip-tional regulatory and post-translational regulation to resist to low K+stress. This paper, combined the previous research, discussed the molecular mechanism of low K+tolerance from three aspects of low K+signal transduction pathway, transcriptional regulatory and post-translational regulation to provide a molecular theoretical basis for genetic improvement of plant low K+tolerance and a direc-tion for the study of plant low K+resistance in the future.
低钾胁迫,低钾信号传导,转录调节,翻译后调控,分子机制, Low K
+Stress
Low KK
+Signal Transduction
Transcriptional Regulatory
Post-Translational Regulation
Molecular Mechanism
摘要
K+plays crucial roles in diverse physiological and biochemical processes during plant growth and development. Due to irrational use of fertilizer and continuous cultivate, the K+content of soil decreased gradually. Deficiency of K+content has become one of the major factors limiting the growth and development of plant. Therefore, breeding low K+-resistant varieties has become an important target of current crop breeding, and the excavation of low K+-resistant genes will lay the foundation for the variety improvement of low K+resistance. To survive in low K+environment, plants have evolved complex and high-efficiency signal transduction pathway, and combined with transcriptional regulatory and post-translational regulation to resist to low K+stress. This paper, combined the previous research, discussed the molecular mechanism of low K+tolerance from three aspects of low K+signal transduction pathway, transcriptional regulatory and post-translational regulation to provide a molecular theoretical basis for genetic improvement of plant low K+tolerance and a direction for the study of plant low K+resistance in the future.
王 茜,刘 欣,姜 晶. 植物响应低钾胁迫的信号传导和分子调节机制的研究进展Research Progress on Signal Transduction and Molecular Regulatory Mechanism of Plants in Response to Low K+Stress[J]. 植物学研究, 2020, 09(06): 551-560. https://doi.org/10.12677/BR.2020.96068
参考文献References
Li, W.H., Xu, G.H., Alli, A. and Yu, L. (2018) Plant HAK/KUP/KT K+Transporters: Function and Regulation. Seminars in Cell & Developmental Biology, 74, 133-141. https://doi.org/10.1016/j.semcdb.2017.07.009
Tan, D., Jin, J., Jiang, L., Huang, S. and Liu, Z. (2012) Potassium Assessment of Grain Producing Soils in North China. Agriculture, Ecosystems and Environment, 148, 65-71. https://doi.org/10.1016/j.agee.2011.11.016
Huang, L., Jiang, Q., Wu, J., An, L., Zhou, Z., Wong, C., Wu, M., Yu, H. and Gan, Y. (2020) Zinc Finger Protein 5 (ZFP5) Associates with Ethylene Signaling to Regulate the Phosphate and Potassium Deficiency-Induced Root Hair Development in Arabidopsis. Plant Molecular Biology, 102, 143-158. https://doi.org/10.1007/s11103-019-00937-4
Qin, Y.J., Wu, W.H. and Wang, Y. (2019) ZmHAK5 and ZmHAK1 Function in K+ Uptake and Distribution in Maize under Low K+ Conditions. Journal of Integrative Plant Biology, 61, 691-705. https://doi.org/10.1111/jipb.12756
Zhao, X.M., Liu, Y., Liu, X. and Jiang, J. (2018) Comparative Transcriptome Profiling of Two Tomato Genotypes in Response to Potassium-Deficiency Stress. International Journal of Molecular Sciences, 19, 2402. https://doi.org/10.3390/ijms19082402
Chen, G., Hu, Q., Luo, L., Yang, T., Zhang, S., Hu, Y., Yu, L. and Xu, G. (2015) Rice Potassium Transporter OsHAK1 Is Essential for Maintaining Potassium-Mediated Growth and Functions in Salt Tolerance over Low and High Potassium Concentration Ranges. Plant, Cell & Environment, 38, 2747-2765. https://doi.org/10.1111/pce.12585
Han, M., Wu, W., Wu, W.H. and Wang, Y. (2016) Potassium Transporter KUP7 Is Involved in K+ Acquisition and Translocation in Arabidopsis Root under K+-Limited Conditions. Molecular Plant, 9, 437-446. https://doi.org/10.1016/j.molp.2016.01.012
Hu, W., Lu, Z., Meng, F., Li, X., Cong, R., Ren, T., Sharkey, T.D. and Lu, J. (2020) The Reduction in Leaf Area Precedes That in Photosynthesis under Potassium Deficiency: The Importance of Leaf Anatomy. New Phytologist, 227, 1749-1763. https://doi.org/10.1111/nph.16644
Wang, Y. and Wu, W.H. (2017) Regulation of Potassium Transport and Signaling in Plants. Current Opinion in Plant Biology, 39, 123-128. https://doi.org/10.1016/j.pbi.2017.06.006
Ragel, P., Ródenas, R., García-Martín, E. andrés, Z., Villalta, I., Nieves-Cordones, M., Rivero, R.M., Martínez, V., Pardo, J.M., Quintero, F.J. and Rubio, F. (2015) CIPK23 Regulates HAK5-Mediated High-Affinity K+ Uptake in Arabidopsis Roots. Plant Physiology, 169, 2863-2873. https://doi.org/10.1104/pp.15.01401
Xu, J., Li, H.D., Chen, L.Q., Wang, Y., Liu, L.L., He, L. and Wu, W.H. (2006) A Protein Kinase, Interacting with Two Calcineurin B-Like Proteins, Regulates K+ Transporter AKT1 in Ara-bidopsis. Cell, 125, 1347-1360. https://doi.org/10.1016/j.cell.2006.06.011
Li, J., Yu, L., Qi, G.N., Li, J., Xu, Z.J., Wu, W.H. and Yi, W. (2014) The OsAKT1 Channel Is Critical for K+ Uptake in Rice Roots and Is Modulated by the Rice CBL1-CIPK23 Complex. The Plant Cell, 26, 3387-3402. https://doi.org/10.1105/tpc.114.123455
Lee, S.C., Lan, W.Z., Kim, B.G., Li, L., Cheong, Y.H., Pandey, G.K., Lu, G., Buchanan, B.B. and Luan, S. (2007) A Protein Phosphorylation/DephosphorylationNetwork Regulates a Plant Potassium Channel. Proceedings of the National Academy of Sciences of the United States of America, 104, 15959-15964. https://doi.org/10.1073/pnas.0707912104
Held, K., Pascaud, F., Eckert, C., Gajdanowicz, P., Hashimoto, K., Corratgefaillie, C., Offenborn, J.N., Lacombe, B., Dreyer, I. and Thibaud, J.B. (2011) Calcium-Dependent Modulation and Plasma Membrane Targeting of the AKT2 Potassium Channel by the CBL4/CIPK6 Calcium Sensor/Protein Kinase Complex. Cell Research, 21, 1116-1130. https://doi.org/10.1038/cr.2011.50
Ren, X.L., Qi, G.N., Feng, H.Q., Zhao, S., Zhao, S.S., Wang, Y. and Wu, W.H. (2013) Calcineurin B-Like Protein CBL10 Directly Interacts with AKT1 and Modulates K+Homeostasis in Ara-bidopsis. The Plant Journal, 74, 258-266. https://doi.org/10.1111/tpj.12123
Singh, A., Yadav, A.K., Kaur, K., Sanyal, S.K., Jha, S.K., Fernandes, J.L., Sharma, P., Tokas, I., Pandey, A. and Luan, S. (2018) A Protein Phosphatase 2C, AP2C1, Interacts with and Negatively Regulates the Function of CIPK9 under Potassium-Deficient Conditions in Arabidopsis. Journal of Experimental Botany, 69, 4003-4015. https://doi.org/10.1093/jxb/ery182
Jung, J.Y., Shin, R. and Schachtman, D.P. (2009) Ethylene Mediates Re-sponse and Tolerance to Potassium Deprivation in Arabidopsis. Plant Cell, 21, 607-621. https://doi.org/10.1105/tpc.108.063099
Kim, M.J., Ruzicka, D., Shin, R. and Schachtman, D.P. (2012) The Arabidopsis AP2/ERF Transcription Factor RAP2.11 Modulates Plant Response to Low-Potassium Conditions. Mole-cular Plant, 5, 1042-1057. https://doi.org/10.1093/mp/sss003
Cao, Y., Glass, A.D.M. and Crawford, N.M. (1993) Ammonium Inhibition of Arabidopsis Root Growth Can Be Reversed by Potassium and by Auxin Resistance Mutations aux1, axr1, and axr2. Plant Physiology, 102, 983-989. https://doi.org/10.1104/pp.102.3.983
Li, J., Wu, W.H. and Wang, Y. (2017) Potassium Channel AKT1 Is Involved in the Auxin-Mediated Root Growth Inhibition in Arabidopsis Response to Low K+ Stress. Journal of Inte-grative Plant Biology, 59, 895-909. https://doi.org/10.1111/jipb.12575
Shin, R., Burch, A.Y., Huppert, K., Tiwari, S.B., Murphy, A.S., Guilfoyle, T.J. and Schachtman, D.P. (2007) The Arabidopsis Transcription Factor MYB77 Modulates Auxin Signal Transduction. Plant Cell, 19, 2440-2453. https://doi.org/10.1105/tpc.107.050963
Vicenteagullo, F., Rigas, S., Desbrosses, G., Dolan, L., Hatzopoulos, P. and Grabov, A. (2004) Potassium Carrier TRH1 Is Required for AuxinTransport in Arabidopsis Roots. The Plant Journal, 40, 523-535. https://doi.org/10.1111/j.1365-313X.2004.02230.x
Dolan, L. (2013) Pointing PINs in the Right Directions: APotassium Transporter Is Required for the Polar Localization of AuxinEfflux Carriers. New Phytologist, 197, 1027-1028. https://doi.org/10.1111/nph.12151
Rigas, S., Ditengou, F.A., Ljung, K., Daras, G., Tietz, O., Palme, K. and Hatzopoulos, P. (2013) Root Gravitropism and Root Hair Development Constitute Coupled Develop-mental Responses Regulated by Auxin Homeostasis in the Arabidopsis Root Apex. New Phytologist, 197, 1130-1141. https://doi.org/10.1111/nph.12092
Osakabe, Y., Arinaga, N., Umezawa, T., Katsura, S., Nagamachi, K., Ta-naka, H., Ohiraki, H., Yamada, K., Seo, S.U. and Abo, M. (2013) Osmotic Stress Responses and Plant Growth Con-trolled by Potassium Transporters in Arabidopsis. The Plant Cell, 25, 609-624. https://doi.org/10.1105/tpc.112.105700
Cellier, F., Conéjéro, G., Ricaud, L., Doan, T.L., Lepetit, M., Gosti, F. and Casse, F. (2004) Characterization of AtCHX17, a Member of the Cation/H+ Exchangers, CHX Family, from Arabidopsis Thaliana Suggests a Role in K+ Homeostasis. Plant Journal, 39, 834-846. https://doi.org/10.1111/j.1365-313X.2004.02177.x
Li, G., Wu, Y., Liu, G., Xiao, X., Wang, P., Gao, T., Xu, M., Han, Q., Wang, Y. and Guo, T. (2017) Large-Scale Proteomics Combined with Transgenic Experiments Demon-strates an Important Role of Jasmonic Acid in Potassium Deficiency Response in Wheat and Rice. Molecular & Cellular Proteomics, 16, 1889-1905. https://doi.org/10.1074/mcp.RA117.000032
Chen, Y., Ma, J., Miller, A.J., Luo, B., Wang, M., Zhu, Z. and Ouwerkerk, P.B.F. (2016) OsCHX14 Is Involved in the K+ Homeostasis in Rice (Oryza sativa) Flowers. Plant & Cell Physiology, 57, 1530-1543. https://doi.org/10.1093/pcp/pcw088
Hu, B., Wang, W., Deng, K., Li, H., Zhang, Z., Zhang, L. and Chu, C. (2015) MicroRNA399 Is Involved in Multiple Nutrients Starvation Responses in Rice. Frontiers in Plant Science, 6, 188. https://doi.org/10.3389/fpls.2015.00188
赵晓明. 番茄响应低钾胁迫关键基因的挖掘[D]: [博士学位论文]. 沈阳: 沈阳农业大学园艺学院, 2018.
刘杨. Sly-miR168α调控番茄钾养分吸收和利用的功能验证[D]: [硕士学位论文]. 沈阳: 沈阳农业大学园艺学院, 2018.
Li, L., Kim, B.G., Cheong, Y.H., Pandey, G.K. and Luan, S. (2006) A Ca2+ Signaling Pathway Regulates A K+ Channel for Low-K Response in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 103, 12625-12630. https://doi.org/10.1073/pnas.0605129103
Min, J.K., Ciani, S. and Schachtman, D.P. (2010) A Peroxidase Contributes to ROS Production during Arabidopsis Root Response to Potassium Deficiency. Molecular Plant, 3, 420-427. https://doi.org/10.1093/mp/ssp121
Shin, R., Schachtman, D.P. and Ryan, C.A. (2004) Hydrogen Peroxide Mediates Plant Root Cell Response to Nutrient Deprivation. Proceedings of the National Academy of Sciences of the United States of America, 101, 8827-8832. https://doi.org/10.1073/pnas.0401707101
Yang, T., Zhang, S., Hu, Y., Wu, F., Hu, Q., Chen, G., Cai, J., Wu, T., Moran, N., Yu, L. and Xu, G. (2014) The Role of a Potassium Transporter OsHAK5 in Potassium Acquisition and Transport from Roots to Shoots in Rice at Low Potassium Supply Levels. Plant Physiology, 166, 945-959. https://doi.org/10.1104/pp.114.246520
Zhang, H., Xiao, W., Yu, W., Yao, L., Li, L., Wei, J. and Li, R. (2018) Foxtail Millet SiHAK1 Excites Extreme High- Affinity K+ Uptake to Maintain K+ Homeostasis under Low K+ or Salt Stress. Plant Cell Reports, 37, 1533-1546. https://doi.org/10.1007/s00299-018-2325-2
Cordones, M.N., Lara, A. and Rubio, F. (2019) Modulation of K+ Translocation by AKT1 and AtHAK5 in Arabidopsis Plants. Plant, Cell & Environment, 42, 2357-2371. https://doi.org/10.1111/pce.13573
Zhao, S., Zhang, M.L., Ma, T.L. and Wang, Y. (2016) Phosphorylation of ARF2 Relieves Its Repression of Transcription of the K+ Transporter Gene HAK5 in Response to Low Potassium Stress. The Plant Cell, 28, 3005-3019. https://doi.org/10.1105/tpc.16.00684
Hong, J.P., Takeshi, Y., Kondou, Y., Schachtman, D.P., Matsui, M. and Shin, R. (2013) Identification and Characterization of Transcription Factors Regulating Arabidopsis HAK5. Plant & Cell Physiology, 54, 1478-1490. https://doi.org/10.1093/pcp/pct094
Li, H., Yu, M., Du, X.Q., Wang, Z.F., Wu, W.H., Quintero, F.J., Jin, X.H., Li, H.D. and Wang, Y. (2017) NRT1.5/ NPF7.3 Functions as a Proton-Coupled H+/K+ Antiporter for K+ Loading into the Xylem in Arabidopsis. Plant Cell, 29, 2016-2026. https://doi.org/10.1105/tpc.16.00972
Du, X.Q., Wang, F.L., Li, H., Jing, S., Yu, M., Li, J., Wu, W.H., Kudla, J. and Wang, Y. (2019) The Transcription Factor MYB59 Regulates K+/NO3– Translocation in the Arabidopsis Response to Low K+ Stress. The Plant Cell, 31, 699-714. https://doi.org/10.1105/tpc.18.00674
王二辉, 胡利芹, 薛飞洋, 李微微, 徐兆师, 李连诚, 周永斌. 谷子转录因子基因SiNAC45在拟南芥中对低钾及ABA的响应[J], 作物学报, 2015, 41(9): 1445-1453.
Lan, W.Z., Lee, S.C., Che, Y.F., Jiang, Y.Q. and Luan, S. (2011) Mechanistic Analysis of AKT1 Regulation by the CBL-CIPK-PP2CA Interactions. Molecular Plant, 4, 527-536. https://doi.org/10.1093/mp/ssr031
Cherel, I., Michard, E., Platet, N., Mouline, K. and Thibaud, J.B. (2002) Physical and Functional Interaction of the Arabidopsis K+ Channel AKT2 and Phosphatase AtPP2CA. Plant Cell, 14, 1133-1146. https://doi.org/10.1105/tpc.000943
Brauer, E.K., Ahsan, N., Dale, R., Kato, N., Coluccio, A.E., Kochian, L.V., Thelen, J.J. and Popescu, S.C. ( 2016) The Raf-Like Kinase ILK1 and the High Affinity K⁺ Transporter HAK5 Are Required for Innate Immunity and Abiotic Stress Response. Plant Physiology, 171, 1470-1484. https://doi.org/10.1104/pp.16.00035
Simeunovic, A., Mair, A., Wurzinger, B. and Teige, M. (2016) Know Where Your Clients Are: Subcellular Localization and Targets of Calcium-Dependent Protein Kinases. Journal of Ex-perimental Botany, 67, 3855-3872. https://doi.org/10.1093/jxb/erw157
Liu, L., Zheng, C., Kuang, B., Wei, L., Yan, L. and Wang, T. (2016) Receptor-Like Kinase RUPO Interacts with Potassium Transporters to Regulate Pollen Tube Growth and Integrity in Rice. PLoS Genetics, 12, e1006085. https://doi.org/10.1371/journal.pgen.1006085
Zhao, L.N., Shen, L.K., Zhang, W.Z., Zhang, W., Wang, Y. and Wu, W.H. (2013) Ca2+-Dependent Protein Kinase11 and 24 Modulate the Activity of the Inward Rectifying K+ Channels in Arabidopsis Pollen Tubes. Plant Cell, 25, 649-661. https://doi.org/10.1105/tpc.112.103184
Elsa, R., Claire, C., Frédéric, S., Karine, P. and Christian, B. (2014) CPK13, ANoncanonical Ca2+-Dependent Protein Kinase, Specifically Inhibits KAT2 and KAT1 Shaker K+ Channels and Reduces Stomatal Opening. Plant Physiology, 166, 314-326. https://doi.org/10.1104/pp.114.240226
Corratgefaillie, C., Ronzier, E., Sanchez, F., Prado, K., Kim, J., Lanciano, S., Leonhardt, N., Lacombe, B. and Xiong, T.C. (2017) The Arabidopsis Guard Cell outward Potassium Channel GORK Is Regulated by CPK33. FEBS Letters, 591, 1982-1992. https://doi.org/10.1002/1873-3468.12687
Jeanguenin, L., Alcon, C., Duby, G., Boeglin, M., Chérel, I., Gail-lard, I., Zimmermann, S., Sentenac, H. and Véry, A.A. (2011) AtKC1 Is a General Modulator of Arabidopsis Inward Shaker Channel Activity. Plant Journal, 67, 570-582. https://doi.org/10.1111/j.1365-313X.2011.04617.x
Wang, Y., He, L., Li, H.D., Xu, J. and Wu, W.H. (2010) Potassium Channel α-Subunit AtKC1 Negatively Regulates AKT1-Mediated K+ Uptake in Arabidopsis Roots under Low-K+ Stress. Cell Research, 20, 826-837. https://doi.org/10.1038/cr.2010.74
Wang, X.P., Chen, L.M., Liu, W.X., Shen, L.K., Wang, F.L., Zhou, Y., Zhang, Z., Wu, W.H. and Wang, Y. (2016) AtKC1 and CIPK23 Synergistically Modulate AKT1-Mediated Low-Potassium Stress Responses in Arabidopsis. Plant Physiology, 170, 2264-2277. https://doi.org/10.1104/pp.15.01493
Zhang, B., Karnik, R., Wang, Y., Wallmeroth, N., Blatt, M.R. and Grefen, C. (2015) The Arabidopsis R-SNARE VAMP721 Interacts with KAT1 and KC1 K+ Channels to Moderate K+ Current at the Plasma Membrane. The Plant Cell, 27, 1697-1717. https://doi.org/10.1105/tpc.15.00305
Zhang, A., Ren, H.M., Tan, Y.Q., Qi, G.N., Yao, F.Y., Wu, G.L., Yang, L.W., Hussain, J., Sun, S.J. and Wang, Y.F. (2016) S-Type Anion Channels SLAC1 and SLAH3 Function as Essential Negative Regulators of Inward K+ Channels and Stomatal Opening in Arabidopsis. Plant Cell, 28, 949-955. https://doi.org/10.1105/tpc.15.01050