在临床上,关节软骨损伤是一种常见病,其发生发展可由外伤、骨性关节炎(osteoarthritis, OA)以及剥脱性骨软骨炎等原因造成,而且这种损坏发生后很难修复。关节软骨损伤主要表现为关节疼痛及功能障碍,关节软骨的损伤以及退变都不同程度地发生在老年人及长期剧烈运动的人群中。关节镜检查被认为是诊断关节软骨病变的金标准。但由于其有创检查的性质,对检查者的技术水平要求很高,且无法深入了解软骨的内部情况。定量磁共振成像(quantitative magnetic resonance imaging, qMRI)既可显示软骨形态学变化,又可以定量评估软骨的生化成分,由于该技术具有无创、良好的软组织分辨力、多参数、多平面成像的优势,它能以非侵入性的定量测量来敏感地监测软骨的微细变化,提供可靠和可重复的成像生物标志物。 Clinically, articular cartilage damage is a common disease. Its occurrence and development can be caused by factors such as trauma, osteoarthritis (OA), and osteochondritis dissecans. Once this damage occurs, it is difficult to repair. Articular cartilage damage is mainly manifested as joint pain and dysfunction. In the elderly and people who exercise vigorously for a long time, the degeneration and damage of articular cartilage occur to varying degrees. Arthroscopy is considered to be the gold standard for diagnosing articular cartilage diseases. However, it is an invasive examination, which requires a high level of technology for the examiner, and cannot have a thorough understanding of the internal condition of the cartilage. Quantitative magnetic resonance imaging (qMRI) can not only display cartilage morphological changes, but also quantitatively evaluate the biochemical components of cartilage. It has the advantages of non-invasive, good soft tissue resolution, multi-parameter, and multi-plane imaging. It can sensitively monitor the microscopic changes of cartilage with non-invasive quantitative measurements and provide reliable and repeatable imaging biomarkers.
薛 源,王 拯,杨绿林,冯罡宁,胡学宇,金群华. 定量磁共振成像在关节软骨中的应用研究进展Research Progress of Quantitative Magnetic Resonance Imaging in Articular Cartilage[J]. 临床医学进展, 2020, 10(08): 1855-1861. https://doi.org/10.12677/ACM.2020.108279
参考文献References
Bruno, F., Arrigoni, F., Palumbo, P., et al. (2019) New Advances in MRI Diagnosis of Degenerative Osteoarthropathy of the Peripheral Joints. La Radiologia Medica, 124, 1121-1127. https://doi.org/10.1007/s11547-019-01003-1
Guermazi, A., Roemer, F.W., Alizai, H., et al. (2015) State of the Art: MR Imaging after Knee Cartilage Repair Surgery. Radiology, 277, 23-43. https://doi.org/10.1148/radiol.2015141146
Link, T.M., Neumann, J. and Li, X. (2017) Prestructural Cartilage Assessment Using MRI. Journal of Magnetic Resonance Imaging, 45, 949-965. https://doi.org/10.1002/jmri.25554
Mansour, J.M. (2003) Biomechanics of Cartilage, Kinesiology: The Mechanics and Pathomechanics of Human Movement. Lippincott Williams and Wilkins, Philadelphia, 66-79.
Chaudhari, A.M., Briant, P.L., Bevill, S.L., Koo, S. and Andriacchi, T.P. (2008) Knee Kinematics, Cartilage Morphology, and Osteoarthritis after ACL Injury. Medicine & Science in Sports & Exercise, 40, 215-222. https://doi.org/10.1249/mss.0b013e31815cbb0e
Burstein, D., Gray, M., Mosher, T., et al. (2009) Measures of Molecular Composition and Structure in Osteoarthritis. Radiologic Clinics of North America, 47, 675-686. https://doi.org/10.1016/j.rcl.2009.04.003
Bay-Jensen, A.C., Hoegh-Madsen, S., Dam, E., et al. (2010) Which Elements Are Involved in Reversible and Irreversible Cartilage Degradation in Osteoarthritis? Rheumatology International, 30, 435-442. https://doi.org/10.1007/s00296-009-1183-1
Xing, W., Sheng, J., Chen, W.H., et al. (2011) Reproducibility and Accuracy of Quantitative Assessment of Articular Cartilage Volume Measurements with 3.0 Tesla Magnetic Resonance Imaging. Chinese Medical Journal, 124, 1251-1256.
Eckstein, F., Charles, H.C., Buck, R.J., et al. (2005) Accuracy and Precision of Quantitative Assessment of Cartilage Morphology by Magnetic Resonance Imaging at 3.0T. Arthritis & Rheumatology, 52, 3132-3136. https://doi.org/10.1002/art.21348
Jones, G., Ding, C., Scott, F., et al. (2004) Early Radiographic Osteoarthritis Is Associated with Substantial Changes in Cartilage Volume and Tibial Bone Surface Area in Both Males and Females. Osteoarthritis Cartilage, 12, 169-174. https://doi.org/10.1016/j.joca.2003.08.010
Kornaat, P.R., Reeder, S.B., Koo, S., et al. (2005) MR Imaging of Articular Cartilage at 1.5T and 3.0T: Comparison of SPGR and SSFP Sequences. Osteoarthritis Cartilage, 13, 338-344. https://doi.org/10.1016/j.joca.2004.12.008
Hudelmaier, M., Glaser, C., Hohe, J., et al. (2001) Age-Related Changes in the Morphology and Deformational Behavior of Knee Joint Cartilage. Arthritis & Rheumatology, 44, 2556-2561. https://doi.org/10.1002/1529-0131(200111)44:11<2556::AID-ART436>3.0.CO;2-U
Eckstein, F., Cotofana, S., Wirth, W., et al. (2011) Greater Rates of Cartilage Loss in Painful Knees than in Pain-Free Knees after Adjustment for Radiographic Disease Stage: Data from the Osteoarthritis Initiative. Arthritis & Rheumatology, 63, 2257-2267. https://doi.org/10.1002/art.30414
Roos, E.M. and Dahlberg, L. (2005) Positive Effects of Moderate Exercise on Glycosaminoglycan Cotent in Knee Cartilage: A Four-Month, Randomized, Controlled Trial in Patients at Risk of Osteoarthritis. Arthritis & Rheumatology, 52, 3507-3514. https://doi.org/10.1002/art.21415
Brinkhof, S., Nizak, R., Khlebnikov, V., et al. (2018) Detection of Early Cartilage Damage: Feasibility and Potential of gagCEST Imaging at 7 T. European Radiology, 28, 2874-2881. https://doi.org/10.1007/s00330-017-5277-y
Kogan, F., Hargreaves, B.A. and Gold, G.E. (2017) Volumetric Multislice gagCEST Imaging of Articular Cartilage: Optimization and Comparison with T1rho. Magnetic Resonance in Medicine, 77, 1134-1141. https://doi.org/10.1002/mrm.26200
Singh, A., Haris, M., Cai, K., et al. (2012) Chemical Exchange Saturation Transfer Magnetic Resonance Imaging of Human Knee Cartilage at 3T and 7T. Magnetic Resonance in Medicine, 68, 588-594. https://doi.org/10.1002/mrm.23250
Franklin, S.P., Stoker, A.M., Lin, A.S.P., et al. (2019) T1ρ, T2 Mapping, and EPIC-μCT Imaging in a Canine Model of Knee Osteochondral Injury. Journal of Orthopaedic Research, 38, 368-377. https://doi.org/10.1002/jor.24450
李智慧. MRT1ρ成像技术在关节软骨中的研究进展[J]. 国际医学放射学杂志, 2012, 35(6): 557-561.
Bolbos, R.I., Ma, C.B., Link, T.M., et al. (2008) In Vivo T1ρ Quantitative Assessment of Knee Cartilage after Anterior Cruciate Ligament Injury Using 3 Tesla Magnetic Resonance Imaging. Investigative Radiology, 43, 782-788. https://doi.org/10.1097/RLI.0b013e318184a451
Tsushima, H., Okazaki, K., Takayama, Y., et al. (2012) Evaluation of Cartilage Degradation in Arthritis Using T1ρ Magnetic Resonance Imaging Mapping. Rheumatology International, 32, 2867-2875. https://doi.org/10.1007/s00296-011-2140-3
Fenty, M.C., Dodge, G.R., Kassey, V.B., et al. (2012) Quantitative Cartilage Degeneration Associated with Spontaneous Osteoarthritis in a Guinea Pig Model. Journal of Magnetic Resonance Imaging, 35, 891-898. https://doi.org/10.1002/jmri.22867
Regatte, R.R., Akella, S.V., Borthakur, A., et al. (2002) Proteoglycan Depletion-Induced Changes in Transverse Relaxation Maps of Cartilage: Comparison of T2 and T1rho. Academic Radiology, 9, 1388-1394. https://doi.org/10.1016/S1076-6332(03)80666-9
Witschey, W.R., Borthakur, A., Fenty, M., et al. (2010) T1rho MRI Quantification of Arthroscopically Confirmed Cartilage Degeneration. Magnetic Resonance in Medicine, 63, 1376-1382. https://doi.org/10.1002/mrm.22272
Wang, Y., Wluka, A.E., Jones, G., et al. (2012) Use Magnetic Resonance Imaging to Assess Articular Cartilage. Therapeutic Advances in Musculoskeletal Disease, 4, 77-97. https://doi.org/10.1177/1759720X11431005
Domayer, S.E., Kutscha-Lissberg, F., Welsch, G., et al. (2008) T2 Mapping in the Knee after Microfracture at 3.0T: Correlation of Global T2 Values and Clinical Outcome-Preliminary Results. Osteoarthritis Cartilage, 16, 903-908. https://doi.org/10.1016/j.joca.2007.11.014
Bittersohl, B., Miese, F.R., Hosalkar, H.S., et al. (2012) T2* Mapping of Hip Joint Cartilage in Various Histological Grades of Degeneration. Osteoarthritis Cartilage, 20, 653-660. https://doi.org/10.1016/j.joca.2012.03.011
Mosher, T.J., Smith, H.E., Collins, C., et al. (2005) Change in Knee Cartilage T2 at MR Imaging after Running: A Feasibility Study. Radiology, 234, 245-249. https://doi.org/10.1148/radiol.2341040041
Dunn, T.C., Lu, Y., Jin, H., et al. (2004) T2 Relaxation Time of Cartilage at MR Imaging: Comparison with Severity of Knee Osteoarthritis. Radiology, 232, 592-598. https://doi.org/10.1148/radiol.2322030976
Bolbos, R.I., Zuo, J., Banerjee, S., et al. () Relationship between Trabecular Bone Structure and Articular Cartilage Morphology and Relaxation Times in Early OA of the Knee Joint Using Parallel MRI at 3T. Osteoarthritis Cartilage, 16, 1150-1159. https://doi.org/10.1016/j.joca.2008.02.018
Moshe, T.J., Smith, H., Dardzinski, B.J., et al. (2001) MR Imaging and T2 Mapping of Femoral Cartilage: In Vivo Determination of the Magic Angle Effect. AJR, 177, 665-669. https://doi.org/10.2214/ajr.177.3.1770665
Mlynarik, V., Sulzbacher, I., Bittsanský, M., et al. (2003) Investigation of Apparent Diffusion Constant as an Indicator of Early Degenerative Disease in Articular Cartilage. Journal of Magnetic Resonance Imaging, 17, 440-444. https://doi.org/10.1002/jmri.10276
Mamisch, T.C., Menzel, M.I., Welsch, G.H., et al. (2008) Steady-State Diffusion Imaging for MR In-Vivo Evaluation of Reparative Cartilage after Matrix-Associated Autologous Chondrocyte Transplantation at 3 Tesla-Preliminary Results. European Journal of Radiology, 65, 72-79. https://doi.org/10.1016/j.ejrad.2007.09.015
刘斯润, 朱天缘, 陈汉方, 等. MR扩散加权成像诊断膝关节骨关节病髌骨软骨病变的价值[J]. 中华放射学杂志, 2006, 40(10): 1098-1101.
Burstein, D. (2014) Delayed Gadolinium-Enhanced MRI of Cartilage. In: Kim, Y.J. and Mamisch, T.C., Eds., Hip Magnetic Resonance Imaging, Springer, New York, 33-41. https://doi.org/10.1007/978-1-4614-1668-5_3
Sur, S., Mamisch, T.C., Hughes, T., et al. (2009) High Resolution Fast T1 Mapping Technique for dGEMRIC. Journal of Magnetic Resonance Imaging, 30, 896-900. https://doi.org/10.1002/jmri.21869
Zheng, S. and Xia, Y. (2010) The Impact of the Relaxivity Definition on the Quantitative Measurement of Glycosaminoglycans in Cartilage by the MRI dGEMRIC Method. Magnetic Resonance in Medicine, 63, 25-32. https://doi.org/10.1002/mrm.22169
Trattnig, S., Burstein, D., Szomolanyi, P., et al. (2009) T1(Gd) Gives Comparable Information as Delta T1 Relaxation Rate in dGEMRIC Evaluation of Cartilage Repair Tissue. Investigative Radiology, 44, 598-602. https://doi.org/10.1097/RLI.0b013e3181b4c236
李五根, 龚洪翰. 膝关节软骨的MRI研究基础与进展[J]. 江西医学院学报, 2009, 49(12): 128-131.
Shapiro, E.M., Borthakur, A., Gougoutas, A., et al. (2002) 23Na-MRI Accurately Measures Fixed Charge Density in Articular Cartilage. Magnetic Resonance in Medicine, 47, 284-291. https://doi.org/10.1002/mrm.10054
Wheaton, A.J., Casey, F.L., Gougoutas, A.J., et al. (2004) Correlation of T1rho with Fixed Charge Density in Cartilage. Journal of Magnetic Resonance Imaging, 20, 519-525. https://doi.org/10.1002/jmri.20148
Newbould, R.D., Miller, S.R., Tielbeek, J.A., et al. (2012) Reproducibility of Sodium MRI Measures of Articular Cartilage of the Knee in Osteoarthritis. Osteoarthritis Cartilage, 20, 29-35. https://doi.org/10.1016/j.joca.2011.10.007
Ling, W., Regatte, R.R., Navon, G., et al. (2008) Assessment of Glycosaminoglycan Concentration in Vivo by Chemical Exchange Dependent Saturation Transfer (gagCEST). Proceedings of the National Academy of Sciences of the United States of America, 105, 2266-2270. https://doi.org/10.1073/pnas.0707666105
Kogan, F., Hariharan, H. and Reddy, R. (2013) Chemical Exchange Saturation Transfer (CEST) Imaging: Description of Technique and Potential Clinical Applications. Current Radiology Reports, 1, 102-114. https://doi.org/10.1007/s40134-013-0010-3
Li, X. and Majumdar, S. (2013) Quantitative MRI of Articular Cartilage and Its Clinical Applications. Journal of Magnetic Resonance Imaging, 38, 991-1008. https://doi.org/10.1002/jmri.24313