癫痫是一种常见的慢性神经系统疾病,目前癫痫治疗仍以药物治疗为主。大多数抗癫痫药物(antiepileptic drugs, AEDs)都有不同程度的不良反应,其中一个主要的问题是AEDs对骨骼健康的影响。约50%服用AEDs的癫痫患者会出现骨骼异常,主要表现在骨代谢及骨密度方面。但早期AEDs对骨代谢的影响较容易被患者及临床医生忽视。本文主要从AEDs对骨代谢影响的早期监测、影响机制及预防治疗等方面进行阐述,为临床上AEDs药物的选择及AEDs相关骨异常患者的预防治疗提供一定的理论依据。 Epilepsy is a common chronic nervous system disease. Epilepsy treatment is still based on drug therapy. Most antiepileptic drugs (AEDs) have different degrees of adverse reactions, and one of the main problems is the effect of AEDs on bone health. About 50% of epilepsy patients taking AEDs will have bone abnormalities, mainly in bone metabolism and bone density. However, the effect of early AEDs on bone metabolism is easy to be ignored by patients and clinicians. In this paper, the effects of AEDs on bone metabolism were mainly discussed from the aspects of early monitoring, influence mechanism and prevention and treatment, so as to provide certain theoretical basis for the selection of clinical AEDs drugs and the prevention and treatment of AEDs related bone abnormalities.
抗癫痫药物(AEDs),骨代谢,骨密度,骨质疏松, Antiepileptic Drugs (AEDs)
Bone Metabolism
Bone Mineral Density
Osteoporosis
抗癫痫药物与骨代谢的相关性 研究的进展
通过双能X射线吸收仪测量的骨密度值取决于骨矿物质含量(bone mineral content, BMC)和骨大小。典型的DXA扫描包括脊柱、髋部和腕部的选定区域,因为这些区域是骨质疏松性骨折最先和最常受影响的区域。常规的X射线可以识别骨折,但如果骨密度(bone mineral density, BMD)降低小于30%时,则不能检测到这些骨疾病 [
6
]。
骨形成标志物包括I型前胶原氨基末端肽(N-terminal propeptide of type I procollagen, PINP)、血清骨碱性磷酸酶(serum bone alkaline phosphatase, BALP)、I型前胶原C端前肽(carboxy-terminal propeptide of type 1 procollagen, PICP)和骨钙素(osteocalcin, OC)等。骨吸收标志物主要包括尿中I型胶原C端交联肽(urinary excretion of C-, CTX)、I型胶原N端交联肽(urinary excretion of N-, NTX)和β-胶原特殊系列等(β-Crosslaps, β-CTX)。骨转换标志物作为一种辅助手段,可以在一个时间点测量骨转换率以及骨形成和吸收之间的平衡。这些标志物有助于预测未来低骨密度或骨折风险并监测患者,记录骨质疏松症预防或治疗策略的需要 [
7
]。
安文娜,高学军. 抗癫痫药物与骨代谢的相关性研究的进展Research Progress on the Relationship between Antiepileptic Drugs and Bone Metabolism[J]. 临床医学进展, 2020, 10(08): 1827-1832. https://doi.org/10.12677/ACM.2020.108275
参考文献References
Moshé, S.L., Perucca, E., Ryvlin, P. and Tomson, T. (2015) Epilepsy: New Advances. The Lancet, 385, 884-898. https://doi.org/10.1016/S0140-6736(14)60456-6
Naylor, J., Thevathasan, A., Churilov, L., et al. (2018) Association between Different Acute Stroke Therapies and Development of Post Stroke Seizures. BMC Neurology, 18, Article No. 61. https://doi.org/10.1186/s12883-018-1064-x
Hamed, S.A., Radwan, M.E.N., Haridi, M.A., et al. (2014) Thyroid Gland Volume in Adults with Epilepsy: Relationship to Thyroid Hormonal Function. Neurology and Neuroscience, 5, 2.
Hamed, S.A., et al. (2015) Evaluation of Penile Vascular Status in Men with Epilepsy with Erectile Dysfunction. Seizure, 25, 40-48. https://doi.org/10.1016/j.seizure.2014.12.002
Lazzari, A.A., Dussault, P.M., Thakore-James, M., et al. (2013) Prevention of Bone Loss and Vertebral Fractures in Patients with Chronic Epilepsy—Antiepileptic Drug and Osteoporosis Prevention Trial. Epilepsia, 54, 1997-2004. https://doi.org/10.1111/epi.12351
Abeş, M., Sarihan, H. and Madenci, E. (2003) Evaluation of Bone Mineral Density with Dual X-Ray Absorptiometry for Osteoporosis in Children with Bladder Augmentation. Journal of Pediatric Surgery, 38, 230-232. https://doi.org/10.1053/jpsu.2003.50050
Eastell, R. and Hannon, R.A. (2008) Biomarkers of Bone Health and Osteoporosis Risk: Symposium on “Diet and Bone Health”. Proceedings of the Nutrition Society, 67, 157-162. https://doi.org/10.1017/S002966510800699X
Shen, C., Chen, F., Zhang, Y., Guo, Y. and Ding, M. (2014) Association between Use of Antiepileptic Drugs and Fracture Risk: A Systematic Review and Meta-Analysis. Bone, 64, 246-253. https://doi.org/10.1016/j.bone.2014.04.018
Fan, D., Miao, J., Fan, X., Wang, Q. and Sun, M. (2019) Effects of Valproic Acid on Bone Mineral Density and Bone Metabolism: A Meta-Analysis. Seizure, 73, 56-63. https://doi.org/10.1016/j.seizure.2019.10.017
Koo, D.L., Hwang, K.J., Han, S.W., et al. (2014) Effect of Oxcarbazepine on Bone Mineral Density and Biochemical Markers of Bone Metabolism in Patients with Epilepsy. Epilepsy Research, 108, 442-447. https://doi.org/10.1016/j.eplepsyres.2013.09.009
Cansu, A., Yesilkaya, E., Serdaroğlu, A., et al. (2008) Evaluation of Bone Turnover in Epileptic Children Using Oxcarbazepine. Pediatric Neurology, 39, 266-271. https://doi.org/10.1016/j.pediatrneurol.2008.07.001
Nissen-Meyer, L.S., Svalheim, S., Taubøll, E., et al. (2007) Levetiracetam, Phenytoin, and Valproate Act Differently on Rat Bone Mass, Structure, and Metabolism. Epilepsia, 48, 1850-1860. https://doi.org/10.1111/j.1528-1167.2007.01176.x
Koo, D.L., Joo, E.Y., Kim, D. and Hong, S.B. (2013) Effects of Levetiracetam as a Monotherapy on Bone Mineral Density and Biochemical Markers of Bone Metabolism in Patients with Epilepsy. Epilepsy Research, 104, 134-139. https://doi.org/10.1016/j.eplepsyres.2012.09.002
Fekete, S., Simko, J., Gradosova, I., et al. (2013) Erratum to “The Effect of Levetiracetam on Rat Bone Mass, Structure and Metabolism” [Epilepsy Res. 107 (2013) 56-60]. Epilepsy Research, 107, 56-60. https://doi.org/10.1016/j.eplepsyres.2013.11.015
张静, 王凯旋, 韦翊, 等. 托吡酯和卡马西平对癫痫患儿骨代谢的影响[J]. 中国当代儿科杂志, 2010, 12(2): 96-98.
Heo, K., Rhee, Y., Lee, H.W., et al. (2011) The Effect of Topiramate Monotherapy on Bone Mineral Density and Markers of Bone and Mineral Metabolism in Premenopausal Women with Epilepsy. Epilepsia, 52, 1884-1889. https://doi.org/10.1111/j.1528-1167.2011.03131.x
Arora, E., Singh, H. and Gupta, Y.K. (2016) Impact of Antiepileptic Drugs on Bone Health: Need for Monitoring, Treatment, and Prevention Strategies. Journal of Family Medicine and Primary Care, 5, 248-253. https://doi.org/10.4103/2249-4863.192338
Mikati, M.A., Dib, L., Yamout, B., Sawaya, R., Rahi, A.C. and Fuleihan, G.-H. (2006) Two Randomized Vitamin D Trials in Ambulatory Patients on Anticonvulsants: Impact on Bone. Neurology, 67, 2005-2014. https://doi.org/10.1212/01.wnl.0000247107.54562.0e
Lee, H.S., Wang, S.Y., Salter, D.M., Wang, C.C., Chen, S.J. and Fan, H.C. (2013) The Impact of the Use of Antiepileptic Drugs on the Growth of Children. BMC Pediatrics, 13, Article No. 211. https://doi.org/10.1186/1471-2431-13-211
Svalheim, S., Sveberg, L., Mochol, M. and Taubøll, E. (2015) Interactions between Antiepileptic Drugs and Hormones. Seizure, 28, 12-17. https://doi.org/10.1016/j.seizure.2015.02.022
Kim, D.W., Lee, S.Y., Shon, Y.M. and Kim, J.H. (2013) Effects of New Antiepileptic Drugs on Circulatory Markers for Vascular Risk in Patients with Newly Diagnosed Epilepsy. Epilepsia, 54, e146-e149. https://doi.org/10.1111/epi.12338
Behera, J., Bala, J., Nuru, M., Tyagi, S.C. and Tyagi, N. (2017) Homocysteine as a Pathological Biomarker for Bone Disease. Journal of Cellular Physiology, 232, 2704-2709. https://doi.org/10.1002/jcp.25693
Yazdanpanah, N., Zillikens, M.C., Rivadeneira, F., et al. (2007) Effect of Dietary B Vitamins on BMD and Risk of Fracture in Elderly Men and Women: The Rotterdam Study. Bone, 41, 987-994. https://doi.org/10.1016/j.bone.2007.08.021
Karsenty, G. (2006) Convergence between Bone and Energy Homeostases: Leptin Regulation of Bone Mass. Cell Metabolism, 4, 341-348. https://doi.org/10.1016/j.cmet.2006.10.008
Takeda, S. and Karsenty, G. (2008) Molecular Bases of the Sympathetic Regulation of Bone Mass. Bone, 42, 837-840. https://doi.org/10.1016/j.bone.2008.01.005
Berghuis, B., Van Der Palen, J., DE Haan, G.J., et al. (2017) Carbamazepine- and Oxcarbazepine-Induced Hyponatremia in People with Epilepsy. Epilepsia, 58, 1227-1233. https://doi.org/10.1111/epi.13777
Kinsella, S., Moran, S., Sullivan, M.O., Molloy, M.G. and Eustace, J.A. (2010) Hyponatremia independent of Osteoporosis Is Associated with Fracture Occurrence. Clinical Journal of the American Society of Nephrology, 5, 275-280. https://doi.org/10.2215/CJN.06120809
Diemar, S.S., Sejling, A.S., Eiken, P., Suetta, C., Jørgensen, N.R. and Andersen, N.B. (2019) Hyponatremia and Metabolic Bone Disease in Patients with Epilepsy: A Cross-Sectional Study. Bone, 123, 67-75. https://doi.org/10.1016/j.bone.2019.03.017
Erbayat Altay, E., Serdaroğlu, A., Tümer, L., Gücüyener, K. And Hasanoğlu, A. (2000) Evaluation of Bone Mineral Metabolism in Children Receiving Carbamazepine and Valproic Acid. Journal of Pediatric Endocrinology and Metabolism, 13, 933-939. https://doi.org/10.1515/JPEM.2000.13.7.933