抗菌肽(Antimicrobial peptide, AMPs)又叫宿主防御肽(Host defence peptide, HDPs),通常是由7~100个氨基酸组成的小分子多肽,是生物体天然免疫防御系统的一个重要组成部分。AMPs具有广谱抗感染性细菌(G+、G−)、抗病毒、抗真菌、抗寄生虫、抑杀肿瘤细胞和免疫调节等生物学活性。AMPs通过膜作用和非膜作用两种机制抑杀病原菌。AMPs由于其潜在的治疗作用,近年来受到了人们的广泛关注。与传统的抗生素相比,AMPs具有不易产生耐药性、低毒性、生物多样性和直接攻击性的特点,AMPs被认为是后抗生素时代最有前途的新一代抗菌药物。目前已有60多种AMPs药物进入市场,数百种AMPs药物正处于临床试验阶段。文章综述了抗菌肽的来源、作用机制及在临床上的应用。 Antimicrobial peptides (AMPs), also known as host defense peptides (HDPs), are usually small peptides composed of 7~100 amino acids, which are an important part of the natural immune defense system. AMPs have many biological activities, such as broad-spectrum anti-infective bacteria (G+, G−), antiviral, antifungal, antiparasitic, antitumor and immunomodulatory activities. AMPs can inhibit and kill pathogenic bacteria through membrane acting mechanism and non-membrane acting mechanism. AMPs have been widely concerned in recent years because of their potential therapeutic effects. Compared with traditional antibiotics, AMPs are not easy to produce drug resistance, low toxicity, biodiversity and direct attacking properties. AMPs are considered to be the most promising new generation of antibacterial agents in the post antibiotic era. At present, more than 60 AMPs drugs already reached the market and hundreds of novel therapeutic AMPs are in the clinical trials. This paper reviews the sources, mechanism and recent clinical application of antimicrobial peptides.
吴阳开,金明昌. 抗菌肽的来源、作用机制及临床应用研究进展Sources, Mechanism and Clinical Application of Antimicrobial Peptides[J]. 临床医学进展, 2020, 10(08): 1729-1942. https://doi.org/10.12677/ACM.2020.108260
参考文献References
Ageitos, J.M., Sanchez-Perez, A., Calo-Mata, P., et al. (2017) Antimicrobial Peptides (AMPs): Ancient Compounds That Represent Novel Weapons in the Fight against Bacteria. Biochemical Pharmacology, 133, 117-138. https://doi.org/10.1016/j.bcp.2016.09.018
Harris, F., Dennison, S.R. and Phoenix, D.A. (2009) Anionic Antimicrobial Peptides from Eukaryotic Organisms. Current Protein Peptide Science, 10, 585-606. https://doi.org/10.2174/138920309789630589
Pasupuleti, M., Schmidtchen, A. and Malmsten, M. (2012) Antimicrobial Peptides: Key Components of the Innate Immune System. Critical Reviews in Biotechnology, 32, 143-171. https://doi.org/10.3109/07388551.2011.594423
Brogden, K.A. (2005) Antimicrobial Peptides: Pore Formers or Metabolic Inhibitors in Bacteria. Nature Reviews Microbiology, 3, 238-250. https://doi.org/10.1038/nrmicro1098
Wang, Y.D., Kung, C.W. and Chen, J.Y. (2010) Antiviral Activity by Fish Antimicrobial Peptides of Epinecid-in-1 and Hepcidin 1-5 against Nervous Necrosis Virus in Medaka. Peptides, 31, 1026-1033. https://doi.org/10.1016/j.peptides.2010.02.025
Lupetti, A., Van Dissel, J., Brouwer, C., et al. (2008) Human Antimicrobial Peptides’ Antifungal Activity against Aspergillus fumigatus. European Journal of Clinical Microbiology & Infectious Diseases, 27, 1125-1129. https://doi.org/10.1007/s10096-008-0553-z
Vizioli, J. and Salzet, M. (2002) Antimicrobial Peptides versus Parasitic Infections. Trends in Parasitology, 18, 475-476. https://doi.org/10.1016/S1471-4922(02)02428-5
Hoskin, D.W. and Ramamoorthy, A. (2008) Studies on Anticancer Activities of Antimicrobial Peptides. Biochimica et Biophysica Acta (BBA) Biomembranes, 1778, 357-375. https://doi.org/10.1016/j.bbamem.2007.11.008
Hilchie, A.L., Wuerth, K. and Hancock, R.E. (2013) Immune Modulation by Multifaceted Cationic Host Defense (Antimicrobial) Peptides. Nature Chemical Biology, 9, 761-768. https://doi.org/10.1038/nchembio.1393
Malik, E., Dennison, S.R., Harris, F., et al. (2016) pH Dependent Antimicrobial Peptides and Proteins, Their Mechanisms of Action and Potential as Therapeutic Agents. Pharmaceuticals (Basel), 9, 67. https://doi.org/10.3390/ph9040067
Ahmed, T.A.E. and Hammami, R. (2019) Recent Insights into Structure-Function Relationships of Antimicrobial Peptides. Journal of Food Biochemistry, 43, e12546. https://doi.org/10.1111/jfbc.12546
Dubos, R.J. (1939) Studies on a Bactericidal Agent Extracted from a Soil Bacillus: II. Protective Effect of the Bactericidal Agent against Experimental Pneumococcus Infections in Mice. Journal of Experimental Medicine, 70, 11-17. https://doi.org/10.1084/jem.70.1.11
Dubos, R.J. and Hotchkiss, R.D. (1941) The Production of Bactericidal Substances by Aerobic Sporulating Bacilli. Journal of Experimental Medicine, 73, 629-640. https://doi.org/10.1084/jem.73.5.629
Bednarska, N.G., Wren, B.W. and Willcocks, S.J. (2017) The Importance of the Glycosylation of Antimicrobial Peptides: Natural and Synthetic Approaches. Drug Discovery Today, 22, 919-926. https://doi.org/10.1016/j.drudis.2017.02.001
Conlon, B.P., Nakayasu, E.S., Fleck, L.E., et al. (2013) Activated ClpP Kills Persisters and Eradicates a Chronic Biofilm Infection. Nature, 503, 365-370. https://doi.org/10.1038/nature12790
Andrä, J., Berninghausen, O. and Leippe, M. (2001) Cecropins, Antibacterial Peptides from Insects and Mammals, Are Potently Fungicidal against Candida albicans. Medical Microbiology and Immunology (Berl.), 189, 169-173. https://doi.org/10.1007/s430-001-8025-x
The Antimicrobial Peptide Database (APD). http://aps.unmc.edu/ap/main.php
Vogel, H., Badapanda, C., Knorr, E., et al. (2014) RNA Sequencing Analysis Reveals Abundant Developmental Stage-Specific and Immunity-Related Genes in the Pollen Beetle Meligethes aeneus. Insect Molecular Biology, 23, 98-112. https://doi.org/10.1111/imb.12067
Abry, M.F., Kimenyi, K.M., Masiga, D., et al. (2017) Comparative Genomics Identifies Male Accessory Gland Proteins in Five Glossina Species. Wellcome Open Research, 2, 73. https://doi.org/10.12688/wellcomeopenres.12445.1
Farouk, A.E., Ahamed, N.T., AlZahrani, O., et al. (2017) Inducible Antimicrobial Compounds (Halal) Production in Honey Bee Larvae (Apis mellifera) from Rumaida, Taif by Injecting of Various Dead Microorganisms Extracts. Journal of Applied Biology & Biotechnology, 5, 23-29.
Lee, J. and Lee, D.G. (2015) Antimicrobial Peptides (AMPs) with Dual Mechanisms: Membrane Disruption and Apoptosis. Journal of Microbiology and Biotechnology, 25, 759-764. https://doi.org/10.4014/jmb.1411.11058
Price, D.P., Schilkey, F.D., Ulanov, A., et al. (2015) Small Mosquitoes, Large Implications: Crowding and Starvation Affects Gene Expression and Nutrient Accumulation in Aedes aegypti. Parasites & Vectors, 8, 252. https://doi.org/10.1186/s13071-015-0863-9
Allocca, M., Zola, S. and Bellosta, P. (2018) The Fruit Fly, Drosophila Melanogaster: Modeling of Human Diseases (Part II). In: Drosophila Melanogaster-Model for Recent Advances in Genetics and Therapeutics, IntechOpen, London. https://doi.org/10.5772/intechopen.73199
Thiyonila, B., Reneeta, N.P., Kannan, M., et al. (2018) Dung Beetle Gut Microbes: Diversity, Metabolic and Immunity Related Roles in Host System. International Journal of Scientific Innovations, 1, 84-91.
Manabe, T. and Kawasaki, K. (2017) D-Form KLKLLLLLKLK-NH2 Peptide Exerts Higher Antimicrobial Properties than Its L-Form Counterpart via an Association with Bacterial Cell Wall Components. Scientific Reports, 7, Article No. 43384. https://doi.org/10.1038/srep43384
Yang, Y.T., Lee, M.R., Lee, S., et al. (2018) Tenebrio molitor Gram-Negative-Binding Protein 3 (TmGNBP3) Is Essential for Inducing Downstream Antifungal Tenecin 1 Gene Expression against Infection with Beauveria bassiana JEF-007. Insect Science, 6, 969-977. https://doi.org/10.1111/1744-7917.12482
Duwadi, D., Shrestha, A., Yilma, B., et al. (2018) Identification and Screening of Potent Antimicrobial Peptides in Arthropod Genomes. Peptides, 103, 26-30. https://doi.org/10.1016/j.peptides.2018.01.017
Sheehan, G., Bergsson, G., McElvaney, N.G., et al. (2018) The Human Cathelicidin Antimicrobial Peptide LL-37 Promotes the Growth of the Pulmonary Pathogen Aspergillus fumigatus. Infection and Immunity, 86, IAI.00097-18. https://doi.org/10.1128/IAI.00097-18
Schaal, J.B., Maretzky, T., Tran, D.Q., et al. (2018) Macrocyclic θ-Defensins Suppress Tumor Necrosis Factor-α (TNF-α) Shedding by Inhibition of TNF-α Converting Enzyme. The Journal of Biological Chemistry, 293, 2725-2734. https://doi.org/10.1074/jbc.RA117.000793
Khurshid, Z., Najeeb, S., Mali, M., et al. (2017) Histatin Peptides: Pharmacological Functions and Their Applications in Dentistry. Saudi Pharmaceutical Journal, 25, 25-31. https://doi.org/10.1016/j.jsps.2016.04.027
Baxter, A.A., Lay, F.T., Poon, I.K.H., et al. (2017) Tumor Cell Membrane-Targeting Cationic Antimicrobial Peptides: Novel Insights into Mechanisms of Action and Therapeutic Prospects. Cellular and Molecular Life Sciences, 74, 3809-3825. https://doi.org/10.1007/s00018-017-2604-z
Panteleev, P.V., Balandin, S.V., Ivanov, V.T., et al. (2017) A Therapeutic Potential of Animal β-Hairpin Antimicrobial Peptides. Current Medicinal Chemistry, 24, 1724-1746. https://doi.org/10.2174/0929867324666170424124416
Young-Speirs, M., Drouin, D., Cavalcante, P.A., et al. (2018) Host Defense Cathelicidins in Cattle: Types, Production, Bioactive Functions and Potential Therapeutic and Diagnostic Applications. International Journal of Antimicrobial Agents, 51, 813-821. https://doi.org/10.1016/j.ijantimicag.2018.02.006
Savelyeva, A., Ghavami, S., Davoodpour, P., et al. (2014) An Overview of Brevinin Superfamily: Structure, Function and Clinical Perspectives. Advances in Experimental Medicine & Biology, 818, 197-212. https://doi.org/10.1007/978-1-4471-6458-6_10
Sun, T., Zhan, B. and Gao, Y. (2015) A Novel Cathelicidin from Bufo Bufo gargarizans Cantor Showed Specific Activity to Its Habitat Bacteria. Gene, 571, 172-177. https://doi.org/10.1016/j.gene.2015.06.034
Upadhyay, R.K. (2018) Spider Venom Toxins, Its Purification, Solubilization, and Antimicrobial Activity. International Journal of Green Pharmacy, 12, S200-2014.
Belmadani, A., Semlali, A. and Rouabhia, M. (2018) Dermaseptin! S1 Decreases Candida albicans Growth, Biofilm Formation and the Expression of Hyphal Wall Protein 1 and Aspartic Protease Genes. Journal of Applied Microbiology, 125, 72-83. https://doi.org/10.1111/jam.13745
Tahir, H.M., Zaheer, A., Khan, A.A., et al. (2018) Antibacterial Potential of Venom Extracted from Wolf Spider, Lycosa terrestris (Araneae: Lycosiade). Indian Journal of Animal Science, 52, 286-290. https://doi.org/10.18805/ijar.v0iOF.8484
Kuzmin, D.V., Emelianova, A.A., Kalashnikova, M.B., et al. (2017) Effect of N- and C-Terminal Modifications on Cytotoxic Properties of Antimicrobial Peptide Tachyplesin I. Bulletin of Experimental Biology and Medicine, 162, 754-757. https://doi.org/10.1007/s10517-017-3705-2
Coulen, S.C., Sanders, J.P. and Bruins, M.E. (2017) Valorisation of Proteins from Rubber Tree. Waste and Biomass Valorization, 8, 1027-1041. https://doi.org/10.1007/s12649-016-9688-9
Thao, H.T., Lan, N.T.N. and Mau, C.H. (2017) Overexpression of VrPDF1 Gene Confers Resistance to Weevils in Transgenic Mung Bean Plant. https://doi.org/10.7287/peerj.preprints.3264v1
Mills, S., Griffin, C., O’Connor, P.M., et al. (2017) A Multibacteriocin Cheese Starter System, Comprising Nisin and Lacticin 3147 in Lactococcus lactis, in Combination with Plantaricin from Lactobacillus plantarum. Applied and Environmental Microbiology, 83, 717-799. https://doi.org/10.1128/AEM.00799-17
Su, Z., Leitch, J.J., Abbasi, F., et al. (2017) EIS and PM-IRRAS Studies of Alamethicin Ion Channels in a Tethered Lipid Bilayer. Journal of Electroanalytical Chemistry, 812, 213-220. https://doi.org/10.1016/j.jelechem.2017.12.039
Braïek, O.B., Morandi, S., Cremonesi, P., et al. (2018) Biotechnological Potential, Probiotic and Safety Properties of Newly Isolated Enterocin-Producing Enterococcus lactis Strains. LWT, 92, 361-370. https://doi.org/10.1016/j.lwt.2018.02.045
Ebrahimipour, G.H., Khosravibabadi, Z., Sadeghi, H., et al. (2014) Isolation, Partial Purifification and Characterization of an Antimicrobial Compound, Produced by Bacillus atrophaeus. Jundishapur Journal of Microbiology, 7, e11802. https://doi.org/10.5812/jjm.11802
Sharma, G., Dang, S., Gupta, S., et al. (2018) Antibacterial Activity, Cytotoxicity, and the Mechanism of Action of Bacteriocin from Bacillus subtilis GAS101. Medical Principles and Practice, 27, 186-192. https://doi.org/10.1159/000487306
Hammi, I., Delalande, F., Belkhou, R., et al. (2016) Maltaricin CPN, a New Class IIa Bacteriocin Produced by Carnobacterium Maltaromaticum CPN Isolated from Mould-Ripened Cheese. Journal of Applied Microbiology, 121, 1268-1274. https://doi.org/10.1111/jam.13248
Chen, Y.S., Wu, H.C., Kuo, C.Y., et al. (2018) Leucocin C-607, a Novel Bacteriocin from the Multiple Bacteriocin-Producing Leuconostoc Pseudomesenteroides 607 Isolated from Persimmon. Probiotics and Antimicrobial Proteins, 10, 148-156. https://doi.org/10.1007/s12602-017-9359-6
Singh, R., Miriyala, S.S., Giri, L., et al. (2017) Identification of Unstructured Model for Subtilin Production through Bacillus subtilis Using Hybrid Genetic Algorithm. Process Biochemistry, 60, 1-12. https://doi.org/10.1016/j.procbio.2017.06.005
Guzmán-Rodríguez, J.J., Ochoa-Zarzosa, A., López-Gómez, R., et al. (2015) Plant Antimicrobial Peptides Aspotential Anticancer Agents. BioMed Research International, 2015, Article ID: 735087. https://doi.org/10.1155/2015/735087
Zhao, N., Pan, Y., Cheng, Z., et al. (2016) Lasso Peptide, a Highly Stable Structure and Designable Multi-Functional Backbone. Amino Acids, 48, 1347-1356. https://doi.org/10.1007/s00726-016-2228-x
Muhammad, S.A., Ali, A., Naz, A., et al. (2016) A New Broad-Spectrum Peptide Antibiotic Produced by Bacillus brevis Strain MH9 Isolated from Margalla Hills of Islamabad, Pakistan. International Journal of Peptide Research and Therapeutics, 22, 271-279. https://doi.org/10.1007/s10989-015-9508-2
Araújo, C., Muñoz-Atienza, E., Poeta, P., et al. (2016) Characterization of Pediococcus acidilactici Strains Isolated from Rainbow Trout (Oncorhynchus mykiss) Feed and Larvae: Safety, DNA Fingerprinting, and Bacteriocinogenicity. Diseases of Aquatic Organisms, 119, 129-143. https://doi.org/10.3354/dao02992
Arakawa, K., Yoshida, S., Aikawa, H., et al. (2016) Production of a Bacteriocin-Like in Hibitory Substance by Leuconostoc mesenteroides subsp. Dextranicum 213M0 Isolated from Mongolian Fermented Mare Milk, Airag. Animal Science Journal, 87, 449-456. https://doi.org/10.1111/asj.12445
Tulini, F.L., Lohans, C.T., Bordon, K.C., et al. (2014) Purification and Characterization of Antimicrobial Peptides from Fish Isolate Carnobacterium maltaromaticum C2: Carnobacteriocin X and Carnolysins A1 and A2. International Journal of Food Microbiology, 173, 81-88. https://doi.org/10.1016/j.ijfoodmicro.2013.12.019
Bosma, T.U.S. (2017) Bacterial Surface Display and Screening of Thioether-Bridge-Containing Peptides. U.S. Patent No. 9, 651, 558.
Gajalakshmi, P. (2017) Selective Isolation and Characterization of Rare Actinomycetes Adopted in Glacier Soil of Manaliice Point and Its Activity against Mycobacterium spp. Journal of Microbiology and Biotechnology Research, 7, 1-10. https://doi.org/10.24896/jmbr.2017751
Maldonado-Barragán, A., Caballero-Guerrero, B., Martín, V., et al. (2016) Purification and Genetic Characterization of Gassericin E, a Novel Co-Culture Inducible Bacteriocin from Lactobacillus gasseri EV1461 Isolated from the Vagina of a Healthy Woman. BMC Microbial, 16, 37. https://doi.org/10.1186/s12866-016-0663-1
Perez, R.H., Ishibashi, N., Inoue, T., et al. (2016) Functional Analysis of Genes Involved in the Biosynthesis of Enterocin NKR-5-3B, a Novel Circular Bacteriocin. Journal of Bacteriology, 198, 291-300. https://doi.org/10.1128/JB.00692-15
Brillet-Viel, A., Pilet, M.F., Courcoux, P., et al. (2016) Optimization of Growth and Bacteriocin Activity of the Food Bioprotective Carnobacterium divergens V41 in an Animal Origin Protein Free Medium. Frontiers in Marine Science, 3, 128. https://doi.org/10.3389/fmars.2016.00128
Wan, X., Li, R., Saris, P.E., et al. (2013) Genetic Characterisation and Heterologous Expression of Leucocin C, a Class IIa Bacteriocin from Leuconostoc carnosum 4010. Applied Microbiology and Biotechnology, 97, 3509-3518. https://doi.org/10.1007/s00253-012-4406-4
Wang, Y., Shang, N., Qin, Y., et al. (2018) The Complete Genome Sequence of Lactobacillus plantarum LPL-1, a Novel Antibacterial Probiotic Producing Class IIa Bacteriocin. Journal of Biotechnology, 266, 84-88. https://doi.org/10.1016/j.jbiotec.2017.12.006
Le, T.N., Do, T.H., Nguyen, T.N., et al. (2014) Expression and Simple Purification Strategy for the Generation of Antimicrobial Active Enterocin P from Enterococcus faecium Expressed in Escherichia coli ER2566. Iranian Journal of Biotechnology, 12, 17-25. https://doi.org/10.15171/ijb.1154
Venturina, D.H., Villegas, L.C., Perez, M.T.M., et al. (2016) Isolation and Identification of Subtilosin A-Producing Bacillus subtilis from Mongo Sprouts, Silage and Soil Samples in the Philippines. Asia Life Sciences, 25, 123-136.
Bhat, S.G. (2018) Modelling and Computational Sequence Analysis of a Bacteriocin Isolated from Bacillus licheniformis Strain BTHT. International Journal for Computational Biology, 7, 29-34. https://doi.org/10.34040/IJCB.7.1.2018.93
Hollmann, A., Martinez, M., Maturana, P., et al. (2018) Antimicrobial Peptides: Interaction with Model and Biological Membranes and Synergism with Chemical Antibiotics. Frontiers in Chemistry, 6, 204. https://doi.org/10.3389/fchem.2018.00204
Zhao, H., Mattila, J.P., Holopainen, J.M., et al. (2001) Comparison of the Membrane Association of Two Antimicrobial Peptides, Magainin 2 and Indolicidin. Biophysical Journal, 81, 2979-2991. https://doi.org/10.1016/S0006-3495(01)75938-3
Sani, M.A. and Separovic, F. (2016) How Membrane-Active Peptides Get into Lipid Membranes. Accounts of Chemical Research, 49, 1130-1138. https://doi.org/10.1021/acs.accounts.6b00074
Da Costa, J.P., Cova, M., Ferreira, R., et al. (2015) Antimicrobial Peptides: An Alternative for Innovative Medicines? Applied Microbiology and Biotechnology, 99, 2023-2040. https://doi.org/10.1007/s00253-015-6375-x
Mingeot-Leclercq, M.P. and Décout, J.L. (2016) Bacterial Lipid Membranes as Promising Targets to Fight Antimicrobial Resistance, Molecular Foundations and Illustration through the Renewal of Aminoglycoside Antibiotics and Emergence of Amphiphilic Aminoglycosides. Medicinal Chemistry Communications, 7, 586-611. https://doi.org/10.1039/C5MD00503E
Haney, E.F., Mansour, S.C. and Hancock, R.E.W. (2017) Antimicrobial Peptides: An Introduction. In: Methods in Molecular Biology, Vol. 1548, Humana Press, Totowa, 3-22. https://doi.org/10.1007/978-1-4939-6737-7_1
Nguyen, L.T., Haney, E.F. and Vogel, H.J. (2011) The Expanding Scope of Antimicrobial Peptide Structures and Their Modes of Action. Trends in Biotechnology, 29, 464-472. https://doi.org/10.1016/j.tibtech.2011.05.001
Yang, L., Harroun, T.A., Weiss, T.M., et al. (2001) Barrel-Stave Model or Toroidal Model? A Case Study on Melittin Pores. Biophysical Journal, 81, 1475-1485. https://doi.org/10.1016/S0006-3495(01)75802-X
Reddy, K., Yedery, R. and Aranha, C. (2005) Antimicrobial Peptides: Premises and Promises. International Journal of Antimicrobial Agents, 24, 536-547. https://doi.org/10.1016/j.ijantimicag.2004.09.005
Brogden, K.A. (2005) Antimicrobial Peptides: Pore Formers or Metabolic Inhibitors in Bacteria. Nature Reviews Microbiology, 3, 238-250. https://doi.org/10.1038/nrmicro1098
Melo, M.N., Ferre, R. and Castanho, M.A. (2009) Antimicrobial Peptides: Linking Partition, Activity and High Membrane-Bound Concentrations. Nature Reviews Microbiology, 7, 245-250. https://doi.org/10.1038/nrmicro2095
Gaspar, D., Veiga, A.S. and Castanho, M.A. (2013) From Antimicrobial to Anticancer Peptides. A Review. Frontiers in Microbiology, 4, 294. https://doi.org/10.3389/fmicb.2013.00294
Wu, M.H., Maier, E., Benz, R., et al. (1999) Mechanism of Interaction of Different Classes of Cationic Antimicrobial Peptides with Planar Bilayers and with the Cytoplasmic Membrane of Escherichia coli. Biochemistry, 38, 7235-7242. https://doi.org/10.1021/bi9826299
Hancock, R.E.W. and Patrzykat, A. (2002) Clinical Development of Cationic Antimicrobial Peptides: From Natural to Novel Antibiotics. Current Drug Targets—Infectious Disorders, 2, 79-83. https://doi.org/10.2174/1568005024605855
Cudic, M. and Otvos, L. (2002) Intracellular Targets of Antibacterial Peptides. Current Drug Targets, 3, 101-106. https://doi.org/10.2174/1389450024605445
Krizsan, A., Volke, D., Weinert, S., et al. (2014) Insect-Derived Proline-Rich Antimicrobial Peptides Kill Bacteria by Inhibiting Bacterial Protein Translation at the 70S Ribosome. Angewandte Chemie International Edition in English, 53, 12236-12239. https://doi.org/10.1002/anie.201407145
Mansour, S.C., Pena, O.M. and Hancock, R.E. (2014) Host Defense Peptides: Frontline Immunomodulators. Trends in Immunology, 35, 443-450. https://doi.org/10.1016/j.it.2014.07.004
Yeaman, M.R. and Yount, N.Y. (2003) Mechanisms of Antimicrobial Peptide Action and Resistance. Pharmacological Reviews, 55, 27-55. https://doi.org/10.1124/pr.55.1.2
Carrera, M., Böhme, K., Gallardo, J.M., et al. (2017) Characterization of Foodborne Strains of Staphylococcus aureus by Shotgun Proteomics: Functional Net Works, Virulence Factors and Species-Specific Peptide Biomarkers. Frontiers in Microbiology, 8, 2458. https://doi.org/10.3389/fmicb.2017.02458
Nagarajan, K., Marimuthu, S.K., Palanisamy, S., et al. (2018) Peptide Therapeutics versus Superbugs: Highlight on Current Research and Advancements. International Journal of Peptide Research and Therapeutics, 24, 19-33. https://doi.org/10.1007/s10989-017-9650-0
Le, C.F., Fang, C.M. and Sekaran, S.D. (2017) Intracellular Targeting Mechanisms by Antimicrobial Peptides. Antimicrobial Agents and Chemotherapy, 61, e02340-16. https://doi.org/10.1128/AAC.02340-16
Gordon, Y.J., Romanowski, E.G. and McDermott, A.M. (2005) A Review of Antimicrobial Peptides and Their Therapeutic Potential as Anti-Infective Drugs. Current Eye Research, 30, 505-515. https://doi.org/10.1080/02713680590968637
Mirski, T., Niemcewicz, M., Bartoszcze, M., et al. (2017) Utilisation of Peptides against Microbial Infections—A Review. Annals of Agricultural and Environmental Medicine, 25, 205-210. https://doi.org/10.26444/aaem/74471
Wuerth, K. (2017) Combating Pseudomonas aeruginosa Lung Infections Using Synthetic Host Defense Peptides. Doctoral Dissertation, University of British Columbia, Vancouver.
Conlon, J.M. and Sonnevend, A. (2011) Clinical Applications of Amphibian Antimicrobial Peptides. Journal of Medical Sciences, 4, 62-72. https://doi.org/10.2174/1996327001104020062
Shin, S.H., Lee, Y.S., Shin, Y.P., et al. (2013) Therapeutic Efficacy of Halocidinderived Peptide HG1 in a Mouse Model of Candida albicans Oral Infection. Journal of Antimicrobial Chemotherapy, 68, 1152-1160. https://doi.org/10.1093/jac/dks513
Migoń, D., Neubauer, D. and Kamysz, W. (2018) Hydrocarbon Stapled Antimicrobial Peptides. The Protein Journal, 37, 2-12. https://doi.org/10.1007/s10930-018-9755-0
Haney, E.F., Pletzer, D. and Hancock, R.E. (2018) Impact of Host Defense Peptides on Chronic Wounds and Infections. In: Recent Clinical Techniques, Results, and Research in Wounds, Springer, Cham, 1-17. https://doi.org/10.1007/15695_2017_88
Greber, K.E. and Dawgul, M. (2017) Antimicrobial Peptides under Clinical Trials. Current Topics in Medicinal Chemistry, 17, 620-628. https://doi.org/10.2174/1568026616666160713143331
Sachdeva, S. (2017) Peptides as “Drugs”: The Journey So Far. International Journal of Peptide Research and Therapeutics, 23, 49-60. https://doi.org/10.1007/s10989-016-9534-8
Lau, J.L. and Dunn, M.K. (2018) Therapeutic Peptides: Historical Perspectives, Current Development Trends, and Future Directions. Bioorganic & Medicinal Chemistry, 26, 2700-2707. https://doi.org/10.1016/j.bmc.2017.06.052
Raucher, D. and Ryu, J.S. (2015) Cell-Penetrating Peptides: Strategies for Anticancer Treatment. Trends in Molecular Medicine, 21, 560-570. https://doi.org/10.1016/j.molmed.2015.06.005
Ghosh, C. and Haldar, J. (2015) Membrane-Active Small Molecules: Designs Inspired by Antimicrobial Peptides. ChemMedChem, 10, 1606-1624. https://doi.org/10.1002/cmdc.201500299
Cortes-Penfield, N., Oliver, N.T., Hunter, A., et al. (2018) Daptomycin and Combination Daptomycin-Ceftaroline as Salvage Therapy for Persistent Methicillin-Resistant Staphylococcus aureus Bacteremia. The Journal of Infectious Diseases (London), 50, 643-647. https://doi.org/10.1080/23744235.2018.1448110
Gagliardini, E., Benigni, A. and Perico, N. (2017) Pharmacological Induction of Kidney Regeneration. In: Orlando, G., Remuzzi, G. and Williams, D.F., Eds., Kidney Transplantation, Bioengineering and Regeneration, Academic Press, Cambridge, 1025-1037. https://doi.org/10.1016/B978-0-12-801734-0.00074-6
Jepson, A.K., Schwarz-Linek, J., Ryan, L., et al. (2016) What Is the “Minimum Inhibitory Concentration” (MIC) of Pexiganan Acting on Escherichia coli? A Cautionary Case Study. Advances in Experimental Medicine and Biology, 915, 33-48. https://doi.org/10.1007/978-3-319-32189-9_4
Ng, S.M.S., Teo, S.W., Yong, Y.E., et al. (2017) Preliminary Investigations into Developing All-D Omiganan for Treating Mupirocin-Resistant MRSA Skin Infections. Chemical Biology & Drug Design, 90, 1155-1160. https://doi.org/10.1111/cbdd.13035
Mohammad, H., Thangamani, S. and Seleem, M.N. (2015) Antimicrobial Peptides and Peptidomimetics-Potent Therapeutic Allies for Staphylococcal Infections. Current Pharmaceutical Design, 21, 2073-2088. https://doi.org/10.2174/1381612821666150310102702
Morici, P., Fais, R., Rizzato, C., et al. (2016) Inhibition of Candida albicans Biofilm Formation by the Synthetic Lactoferricin Derived Peptide hLF1-11. PLoS ONE, 11, e0167470. https://doi.org/10.1371/journal.pone.0167470
Javia, A., Amrutiya, J., Lalani, R., et al. (2018) Antimicrobial Peptide Delivery: An Emerging Therapeutic for the Treatment of Burn and Wounds. Therapeutic Delivery, 9, 375-386. https://doi.org/10.4155/tde-2017-0061
De Lorenzi, E., Chiari, M., Colombo, R., et al. (2018) Evidence That the Human Innate Immune Peptide LL-37 May Be a Binding Partner of Abeta and Inhibitor of Fibril Assembly. Biophysical Journal, 114, 393a. https://doi.org/10.1016/j.bpj.2017.11.2174
Menko, A.S. (2015) Method to Treat and Prevent Posterior Capsule Opacification. Patent 8, 999, 370.
Moorthy, N.S.H.N., Pratheepa, V. and Manivannan, E. (2018) Natural Product Derived Drugs for Immunological and Inflammatory Diseases. Natural Products in Clinical Trials, 1, 1-31. https://doi.org/10.2174/9781681082134118010004
Deslouches, B. and Di, Y.P. (2017) Antimicrobial Peptides with Selective Antitumor Mechanisms: Prospect for Anticancer Applications. Oncotarget, 8, 46635-46651. https://doi.org/10.18632/oncotarget.16743
Dösler, S. (2017) Antimicrobial Peptides: Coming to the End of Antibiotic Era, the Most Promising Agents. İstanbul Journal of Pharmacy, 47, 72-76. https://doi.org/10.5152/IstanbulJPharm.2017.0012
Mangoni, M.L., McDermott, A.M. and Zasloff, M. (2016) Antimicrobial Peptides and Wound Healing: Biological and Therapeutic Considerations. Experimental Dermatology, 25, 167-173. https://doi.org/10.1111/exd.12929
Krutetskaya, Z.I., Melnitskaya, A.V., Antonov, V.G., et al. (2017) Lipoxygenases Modulate the Effect of Glutoxim on Na+ Transport in the Frog Skin Epithelium. Doklady Biochemistry and Biophysics, 474, 193-195. https://doi.org/10.1134/S1607672917030073
Harvey, A., Edrada-Ebel, R. and Quinn, R.J. (2015) The Re-Emergence of Natural Products for Drug Discovery in the Genomics Era. Nature Reviews Drug Discovery, 14, 111-129. https://doi.org/10.1038/nrd4510
Butler, M.S., Blaskovich, M.A. and Cooper, M.A. (2017) Antibiotics in the Clinical Pipeline at the End of 2015. The Journal of Antibiotics (Tokyo), 70, 3-24. https://doi.org/10.1038/ja.2016.72
Giuliani, A., Pirri, G. and Nicoletto, S. (2007) Antimicrobial Peptides: An Overview of a Promising Class of Therapeutics. Open Life Sciences, 2, 1-33. https://doi.org/10.2478/s11535-007-0010-5
Feng, Q., Huang, Y. and Chen, M. (2015) Functional Synergy of α-Helical Antimicrobial Peptides and Traditional Antibiotics against Gram-Negative and Gram-Positive Bacteria in Vitro and in Vivo. European Journal of Clinical Microbiology & Infectious Diseases, 34, 197-204. https://doi.org/10.1007/s10096-014-2219-3
李惠钰. 金环蛇毒抗菌肽能否成为下一个抗感染“明星” [N]. 中国科学报, 2019-01-21(5).