糖尿病视网膜病变是糖尿病最常见的并发症,严重威胁患者视力和引起黄斑水肿,但是目前发病机制还不清楚,治疗主要是对症支持治疗,研究发现miRNA在糖尿病并发症发展中起重要作用。因此本文旨对miR-21在糖尿病视网膜疾病中的作用作一综述。 Diabetic retinopathy is a serious threat to the vision of patients with complications, but the pathogenesis is not clear. The treatment is mainly symptomatic treatment. Studies have found that miRNA plays an important role in the development of diabetic complications. Therefore, the purpose of this article is to review the role of miR-21 in diabetic retinal diseases.
任 晓. miR-21在糖尿病视网膜疾病中的研究进展Research Progress of miR-21 in Diabetic Retinopathy[J]. 临床医学进展, 2020, 10(08): 1725-1728. https://doi.org/10.12677/ACM.2020.108259
参考文献References
魏科, 李永蓉, 王志敏. 合肥地区2型糖尿病患者尿微量白蛋白肌酐比值与DR的关系[J]. 国际眼科杂志, 2020, 20(7): 1260-1263.
张海江, 梁亮, 田瑞. IL-23和IL-17在糖尿病性视网膜病变患者房水中的表达[J]. 国际眼科杂志, 2020, 20(7): 1153-1157.
Guo, H., Ingolia, N.T., Weissman, J.S., et al. (2010) Mammalian Micrornas Predominantly Act to Decrease Target mRNA Levels. Nature: International Weekly Journal of Science, 466, 835-840. https://doi.org/10.1038/nature09267
Tien, H., Yvonne, T., et al. (2006) A Pattern-Based Method for the Identification of Microrna Binding Sites and Their Corresponding Heteroduplexes. Cell, 126, 1203-1217. https://doi.org/10.1016/j.cell.2006.07.031
Daehyun, B., Judit, V., Chanseok, S., et al. (2008) The Impact of Micrornas on Protein Output. Nature, 455, 64-71. https://doi.org/10.1038/nature07242
Xu, J., Zhao, J., Evan, G., et al. (2012) Circulating Micrornas: Novel Biomarkers for Cardiovascular Diseases. Journal of Molecular Medicine, 90, 865-875. https://doi.org/10.1007/s00109-011-0840-5
黄俊, 毛新帮. 微小RNA在糖尿病视网膜病变新生血管生成中的研究进展[J]. 中华实验眼科杂志, 2017, 35(5): 478-480.
鲁冰, 任东升, 王松. 三种微小RNA在糖尿病肾脏疾病肾纤维化患者中的水平变化及临床应用研究[J]. 中国糖尿病杂志, 2019, 27(3): 189-193.
Rodolfo, M., Lisa, T., Francesco, C., Donato, S., Paolo, C. and Leonardo, M. (2014) Role of microRNAs in the Modulation of Diabetic Retinopathy. Progress in Retinal and Eye Research, 43, 92-107. https://doi.org/10.1016/j.preteyeres.2014.07.003
Heng, W., Raymond, N., Xin, C., et al. (2016) Microrna-21 Is a Potential Link between Non-Alcoholic Fatty Liver Disease and Hepatocellular Carcinoma via Modulation of the Hbp1-p53-srebp1c Pathway. Gut, 65, 1850-1860. https://doi.org/10.1136/gutjnl-2014-308430
Qiu, F., Tong, H., Wang, Y., et al. (2018) Inhibition of miR-21-5p Suppresses High Glucose-Induced Proliferation and Angiogenesis of Human Retinal Microvascular Endothelial Cells by the Regulation of AKT and ERK Pathways via Maspin. Bioscience, Biotechnology, and Biochemistry, 82, 1366-1376.
Chen, B., et al. (2016) Effect of Microrna-21 on the Proliferation of Human Degenerated Nucleus Pulposus by Targeting Programmed Cell Death 4. Brazilian Journal of Medical and Biological Research, 49, e5020. https://doi.org/10.1590/1414-431x20155020
Wu, Y., Qi, H., Deng, D., et al. (2016) MicroRNA-21 Promotes Cell Proliferation, Migration, and Resistance to Apoptosis through PTEN/PI3K/AKT Signaling Pathway in Esophageal Cancer. Tumor Biology, 37, 12061-12070. https://doi.org/10.1007/s13277-016-5074-2
Ono, M., Yamada, K., Avolio, F., et al. (2015) Targeted Knock-Down of miR21 Primary Transcripts Using Snomen Vectors Induces Apoptosis in Human Cancer Cell Lines. PLoS ONE, 10, e0138668. https://doi.org/10.1371/journal.pone.0138668
Liu, L., Li, C., Chen, Q., et al. (2011) MiR-21 Induced Angiogenesis through AKT and ERK Activation and HIF-1α Expression. PLoS ONE, 6, e19139. https://doi.org/10.1371/journal.pone.0019139
Qiu, R., Yu, X., Wang, L., et al. (2020) Inhibition of Glycolysis in Pathogenic TH17 Cells through Targeting a miR-21-Peli1-c-Rel Pathway Prevents Autoimmunity. The Journal of Immunology, ji2000060. https://doi.org/10.4049/jimmunol.2000060
Hartge, M.M., Unger, T. and Kintscher, U. (2007) The Endothelium and Vascular Inflammation in Diabetes. Diabetes & Vascular Disease Research Official Journal of the International Society of Diabetes & Vascular Disease, 4, 84-88. https://doi.org/10.3132/dvdr.2007.025
Mudaliar, H., Pollock, C., Ma, J., et al. (2014) The Role of TLR2 and 4-Mediated Inflammatory Pathways in Endothelial Cells Exposed to High Glucose. PLoS ONE, 9, e108844. https://doi.org/10.1371/journal.pone.0108844
徐国兴, 许建斌, 胡建章. 糖尿病大鼠视网膜中缺氧诱导因子-1α和血管内皮生长因子表达的研究[J]. 国际眼科杂志, 2008(3): 487-490.
Zhou, R., Hu, G., Gong, A.Y., et al. (2010) Binding of NF-kappaB p65 Subunit to the Promoter Elements Is Involved in LPS-Induced Transactivation of miRNA Genes in Human Biliary Epithelial Cells. Nucleic Acids Research, 38, 3222-3232. https://doi.org/10.1093/nar/gkq056
Sekar, D., Venugopal, B., Sekar, P., et al. (2016) Role of microRNA 21 in Diabetes and Associated/Related Diseases. Gene, 582, 14-18. https://doi.org/10.1016/j.gene.2016.01.039
Kim, D.I., Park, M.J., Choi, J.H., et al. (2015) Hyperglycemia-Induced GLP-1R Downregulation Causes RPE Cell Apoptosis. International Journal of Biochemistry & Cell Biology, 59, 41-51. https://doi.org/10.1016/j.biocel.2014.11.018
Malfait, M., Gomez, P., Veen, T.A.B.V., et al. (2001) Effects of Hyperglycemia and Protein Kinase C on Connexin43 Expression in Cultured Rat Retinal Pigment Epithelial Cells. The Journal of Membrane Biology, 181, 31-40. https://doi.org/10.1007/s0023200100082
Lu, J., Zhang, Z., Ma, X., et al. (2020) Repression of Microrna-21 Inhibits Retinal Vascular Endothelial Cell Growth and Angiogenesis via PTEN Dependent-PI3K/AKT/VEGF Signaling Pathway in Diabetic Retinopathy. Experimental Eye Research, 190, Article ID: 107886. https://doi.org/10.1016/j.exer.2019.107886
Ye, Z., Li, Z.H. and He, S.Z. (2017) Long Non-Coding RNA Associated-Competing Endogenous RNAs Are Induced by Clusterin in Retinal Pigment Epithelial Cells. Molecular Medicine Reports, 16, 8399-8405. https://doi.org/10.3892/mmr.2017.7606
Iannone, L., Zhao, L., Dubois, O., et al. (2014) miR-21/DDAH1 Pathway Regulates Pulmonary Vascular Responses to Hypoxia. Biochemical Journal, 462, 103. https://doi.org/10.1042/BJ20140486