提出并研究具有反馈控制和Beddington-DeAngelis功能反应的离散竞争系统,利用差分不等式,并通过构造适当的Lyapunov函数,得到了该系统具有持久性和全局吸引性的充分条件。利用泛函概周期的壳理论,得到了保证该系统存在唯一全局吸引概周期解的充分条件。所得结果补充了相关文献的工作。 A two species discrete competitive system with feedback controls and Beddington-DeAngelis functional response is studied in this paper. By using the difference inequality theory and constructing the suitable Lyapunov functional, some sufficient conditions are obtained for the permanence and global attractivity of the system. Further, by applying almost periodic functional hull theory, we obtain a set of sufficient conditions which guarantee the existence of a unique global attractive positive almost periodic sequence solution of the system. Our results supplement some existing ones.
张杰华
阳光学院基础教研部,福建 福州
收稿日期:2020年7月15日;录用日期:2020年7月28日;发布日期:2020年8月4日
提出并研究具有反馈控制和Beddington-DeAngelis功能反应的离散竞争系统,利用差分不等式,并通过构造适当的Lyapunov函数,得到了该系统具有持久性和全局吸引性的充分条件。利用泛函概周期的壳理论,得到了保证该系统存在唯一全局吸引概周期解的充分条件。所得结果补充了相关文献 [
关键词 :概周期解,全局吸引性,离散,反馈控制,竞争系统
Copyright © 2020 by author(s) and beplay安卓登录
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/
1975年Beddington [
{ x ˙ 1 ( t ) = x 1 ( t ) ( r 1 ( t ) − a 1 ( t ) x 1 ( t ) − b 1 ( t ) x 2 ( t ) α 1 ( t ) + β 1 ( t ) x 1 ( t ) + γ 1 ( t ) x 2 ( t ) ) x ˙ 2 ( t ) = x 2 ( t ) ( r 2 ( t ) − a 2 ( t ) x 2 ( t ) − b 2 ( t ) x 1 ( t ) α 2 ( t ) + β 2 ( t ) x 1 ( t ) + γ 2 ( t ) x 2 ( t ) ) (1)
并对该系统的动力学行为进行了研究。
众多研究表明,当种群世代不重叠或数量很少时,用差分方程来刻画离散时间模型比连续的更符合实际。考虑到在实际生态系统中,生态系统经常被不可预测的因素所干扰,这将可能使某些生物参数发生改变,破坏生态的平衡,这就需要人类对其进行开发和管理,从而更好的预测和控制生态系统所受的干扰。因此,把反馈控制考虑进生物数学模型中,是必要且相当有意义的。因此,我们在文 [
{ x 1 ( n + 1 ) = x 1 ( n ) exp { r 1 ( n ) − a 1 ( n ) x 1 ( n ) − b 1 ( n ) x 2 ( n ) α 1 ( n ) + β 1 ( n ) x 1 ( n ) + γ 1 ( n ) x 2 ( n ) − c 1 ( n ) u 1 ( n ) } x 2 ( n + 1 ) = x 2 ( n ) exp { r 2 ( n ) − a 2 ( n ) x 2 ( n ) − b 2 ( n ) x 1 ( n ) α 2 ( n ) + β 2 ( n ) x 1 ( n ) + γ 2 ( n ) x 2 ( n ) − c 2 ( n ) u 2 ( n ) } Δ u 1 ( n ) = − e 1 ( n ) u 1 ( n ) + d 1 ( n ) x 1 ( n ) Δ u 2 ( n ) = − e 2 ( k ) u 2 ( n ) + d 2 ( n ) x 2 ( n ) (2)
这里 x 1 ( n ) 和 x 2 ( n ) 分别表示两竞争种群在第n代的种群密度, r i ( n ) ( i = 1 , 2 ) 表示两种群的内禀增长率, a i ( n ) ( i = 1 , 2 ) 为种内竞争系数, b i ( n ) ( i = 1 , 2 ) 为种间竞争系数 r i ( n ) , a i ( n ) , b i ( n ) , c i ( n ) , d i ( n ) , e i ( n ) , α i ( n ) , β i ( n ) , γ i ( n ) ( i = 1 , 2 ) 均为非负有界的概周期序列,并且 0 < e i ( k ) < 1 。本文的目的旨在通过适当的分析手法,得到保证系统(2)永久持续生存、概周期解的存在唯一性和全局吸引性的充分条件。
从生物种群意义上考虑,设系统(2)满足初始条件 x i ( 0 ) > 0 , u i ( 0 ) > 0 ,则对任意的 n ≥ 0 都有 x i ( n ) > 0 , u i ( n ) > 0 。对于任一有界序列 { h ( n ) } ,定义
h l = inf n ∈ N { h ( n ) } , h u = sup n ∈ N { h ( n ) } .
为了后续的证明,我们给出一些定义和引理。
定义2.1 [
0 < inf n ∈ z x i ( n ) ≤ sup n ∈ z x i ( n ) < + ∞ , 0 < inf n ∈ z u i ( n ) ≤ sup n ∈ z u i ( n ) < + ∞ , i = 1 , 2.
则 X ( n ) 称为Z上的严格正解。
引理2.1 [
x ( n + 1 ) ≤ x ( n ) exp { a ( n ) − b ( n ) x ( n ) } ,
其中 a ( n ) , b ( n ) 是具有正的上下界的非负序列,则
lim sup n → + ∞ x ( n ) ≤ exp ( a u − 1 ) b l .
引理2.2 [
lim inf n → ∞ x ( n ) ≥ min { a l b u exp ( a l − b u x * ) , a l b u } .
引理2.3 [
y ( n ) ≤ A k y ( n − k ) + ∑ i = 0 k − 1 A i B ( n − i − 1 ) , k ≤ n .
特别地,若 A < 1 且B有上界M,则 lim sup n → + ∞ y ( n ) ≤ M 1 − A 。
引理2.4 [
y ( n ) ≥ A k y ( n − k ) + ∑ i = 0 k − 1 A i B ( n − i − 1 ) , k ≤ n .
特别地,若 A < 1 且B有下界 m * ,则 lim inf n → + ∞ y ( n ) ≥ m * 1 − A 。
定理 2.1 若条件(H1)
r 1 l α 1 l > ( b 1 u − r 1 l γ 1 l ) M 2 + c 1 u N 1 ( α 1 l + γ 1 l M 2 ) , r 2 l α 2 l > ( b 2 u − r 2 l γ 2 l ) M 1 + c 2 u N 2 ( α 2 l + γ 2 l M 1 ) ,
成立,则系统(2)是永久持续生存的,即对系统(2)的任一正解 ( x 1 ( n ) , x 2 ( n ) , u 1 ( n ) , u 2 ( n ) ) T ,均满足:
m i ≤ lim inf n → + ∞ x i ( n ) ≤ lim sup n → + ∞ x i ( n ) ≤ M i , n i ≤ lim inf n → + ∞ u i ( n ) ≤ lim sup n → + ∞ u i ( n ) ≤ N i , (3)
其中 m i , n i , M i , N i , i = 1 , 2 是与解无关的常数。
证明 由(H1),存在任意小的正数 ε ,使得
r 1 l α 1 l > ( b 1 u − r 1 l γ 1 l ) ( M 2 + ε ) + c 1 u ( N 1 + ε ) ( α 1 l + γ 1 l ( M 2 + ε ) ) , r 2 l α 2 l > ( b 2 u − r 2 l γ 2 l ) ( M 1 + ε ) + c 2 u ( N 2 + ε ) ( α 2 l + γ 2 l ( M 1 + ε ) )
从而有
r 1 l − b 1 u ( M 2 + ε ) α 1 l + γ 1 l ( M 2 + ε ) − c 1 u ( N 1 + ε ) > 0 , r 2 l − b 2 u ( M 1 + ε ) α 2 l + γ 2 l ( M 1 + ε ) − c 2 u ( N 2 + ε ) > 0 , (4)
设 ( x 1 ( n ) , x 2 ( n ) , u 1 ( n ) , u 2 ( n ) ) T 是系统(2)的任一解,则由系统(2)的前两个方程可得
x i ( n + 1 ) ≤ x i ( n ) exp { r i ( n ) − a i ( n ) x i ( n ) }
应用引理2.1,可得
lim sup k → + ∞ x i ( k ) ≤ 1 a i l exp { r i u − 1 } ≜ M i , i = 1 , 2. (5)
故对上述的正数 ε ,存在 K 1 > 0 ,当 n ≥ K 1 时,有
x i ( n ) ≤ M i + ε , i = 1 , 2. (6)
将上式代入模型(2)的后两个方程可得
u i ( n + 1 ) ≤ ( 1 − e i l ) u i ( n ) + d i ( n ) ( M i + ε ) , i = 1 , 2.
利用引理2.3,则有
lim sup n → + ∞ u i ( n ) ≤ d i u ( M i + ε ) e i l , i = 1 , 2.
对于上面的不等式,因为 ε 的任意性,可令 ε → 0 ,从而得到
lim sup n → + ∞ u i ( n ) ≤ d i u M i e i l = d e f N i , i = 1 , 2. (7)
显然,存在 K 2 > K 1 ,且满足当 n ≥ K 2 时,
u i ( n ) ≤ N i + ε , i = 1 , 2. (8)
将(6)和(8)代入模型(2)的第一个方程可得
x 1 ( n + 1 ) ≥ x 1 ( n ) exp { r 1 ( n ) − a 1 ( n ) x 1 ( n ) − b 1 ( n ) x 2 ( n ) α 1 ( n ) + γ 1 ( n ) x 2 ( n ) − c 1 ( n ) u 1 ( n ) } ≥ x 1 ( n ) exp { r 1 l − a 1 u x 1 ( n ) − b 1 u ( M 2 + ε ) α 1 l + γ 1 l ( M 2 + ε ) − c 1 u ( N 1 + ε ) } = x 1 ( n ) exp { A 1 ε − a 1 u x 1 ( n ) } , ( n ≥ K 2 ) (9)
其中 A 1 ε = r 1 l − b 1 u ( M 2 + ε ) α 1 l + γ 1 l ( M 2 + ε ) − c 1 u ( N 1 + ε ) 。应用引理2.2有
lim inf n → + ∞ x 1 ( n ) ≥ min { A 1 ε a 1 u exp ( A 1 ε − a 1 u M 1 ) , A 1 ε a 1 u }
在上面的不等式中,令 ε → 0 得到
lim inf n → + ∞ x 1 ( n ) ≥ min { A 1 a 1 u exp ( A 1 − a 1 u M 1 ) , A 1 a 1 u } ≜ m 1 (10)
其中 A 1 = r 1 l − b 1 u M 2 α 1 l + γ 1 l M 2 − c 1 u N 1 。
类似可得,当 n ≥ K 2 时,
lim inf n → + ∞ x 2 ( n ) ≥ min { A 2 a 2 u exp ( A 2 − a 2 u M 2 ) , A 2 a 2 u } ≜ m 2 (11)
其中 A 2 = r 2 l − b 2 u M 1 α 2 l + γ 2 l M 1 − c 2 u N 2 。
由(10) (11)知,对任意的 ε > 0 ,存在 K 3 > K 2 ,当 n ≥ K 3 时,有
x i ( n ) ≥ m i − ε , i = 1 , 2 (12)
将(12)代入系统(2)的后两个方程可得,当 n ≥ K 3 时,
u i ( n + 1 ) ≥ ( 1 − e i u ) u i ( n ) + d i ( n ) ( m i − ε ) .
利用引理2.4,则有
lim inf n → + ∞ u i ( n ) ≥ d i l ( m i − ε ) e i u , i = 1 , 2.
令 ε → 0 得到
lim inf n → + ∞ u i ( n ) ≥ d i l m i e i u = d e f n i , i = 1 , 2. (13)
由(5) (7) (10) (11)及(13)可知,系统(2)是永久持续生存的。证毕。
定理2.2 设(H2)
λ 1 μ 1 − λ 1 b 1 u β 1 u M 2 E 1 2 − λ 2 b 2 u α 2 u E 2 2 − λ 2 b 2 u γ 2 u M 2 E 2 2 − λ 3 d 1 u > 0 , λ 2 μ 2 − λ 2 b 2 u γ 2 u M 1 E 2 2 − λ 1 b 1 u α 1 u E 1 2 − λ 1 b 1 u β 1 u M 1 E 1 2 − λ 4 d 2 u > 0 , λ 3 e 1 l − λ 1 c 1 u > 0 , λ 4 e 2 l − λ 2 c 2 u > 0 ,
其中 μ i = min { a i l , 2 M i − a i u } , E i = α i l + β i l m 1 + γ i l m 2 , i = 1 , 2 。
若(H1)和(H2)同时成立,则对系统(2)的任意两个正解 ( x 1 ( n ) , x 2 ( n ) , u 1 ( n ) , u 2 ( n ) ) T 和 ( x 1 ∗ ( n ) , x 2 ∗ ( n ) , u 1 ∗ ( n ) , u 2 ∗ ( n ) ) T ,必满足
lim n → + ∞ | x i ( n ) − x i ∗ ( n ) | = 0 , lim n → + ∞ | u i ( n ) − u i ∗ ( n ) | = 0 , i = 1 , 2.
即系统(2)具有全局吸引性。
证明 由(H2),存在常数 δ > 0 及充分小的正数 ε ,使下列成立
λ 1 μ 1 ε − λ 1 b 1 u β 1 u ( M 2 + ε ) E 1 ε 2 − λ 2 b 2 u α 2 u E 2 ε 2 − λ 2 b 2 u γ 2 u ( M 2 + ε ) E 2 ε 2 − λ 3 d 1 u > δ , λ 2 μ 2 ε − λ 2 b 2 u γ 2 u ( M 1 + ε ) E 2 ε 2 − λ 1 b 1 u α 1 u E 1 ε 2 − λ 1 b 1 u β 1 u ( M 1 + ε ) E 1 ε 2 − λ 4 d 2 u > δ , λ 3 e 1 l − λ 1 c 1 u > δ , λ 4 e 2 l − λ 2 c 2 u > δ ,
其中 μ i ε = min { a i l , 2 M i + ε − a i u } , E i ε = α i l + β i l ( m 1 − ε ) + γ i l ( m 2 − ε ) , i = 1 , 2 。
对上述 ε ,根据定理3.1,对系统(2)的任意正解 ( x 1 ( n ) , x 2 ( n ) , u 1 ( n ) , u 2 ( n ) ) T 和 ( x 1 ∗ ( n ) , x 2 ∗ ( n ) , u 1 ∗ ( n ) , u 2 ∗ ( n ) ) T ,存在常数 T 1 > 0 ,对 n ≥ T 1 和 i = 1 , 2 有
m i − ε ≤ x i ( n ) , x i ∗ ( n ) ≤ M i + ε , n i − ε ≤ u i ( n ) , u i ∗ ( n ) ≤ N i + ε .
定义
V 1 ( n ) = | ln x 1 ( n ) − ln x 1 ∗ ( n ) |
则由模型(2)的第一个方程可得
V 1 ( n + 1 ) = | ln x 1 ( n + 1 ) − ln x 1 ∗ ( n + 1 ) | ≤ | ln x 1 ( n ) − ln x 1 ∗ ( n ) − a 1 ( n ) ( x 1 ( n ) − x 1 ∗ ( n ) ) | + b 1 ( n ) | x 2 ( n ) α 1 ( n ) + β 1 ( n ) x 1 ( n ) + γ 1 ( n ) x 2 ( n ) − x 2 ∗ ( n ) α 1 ( n ) + β 1 ( n ) x 1 ∗ ( n ) + γ 1 ( n ) x 2 ∗ ( n ) | + c 1 ( n ) | u 1 ( n ) − u 1 ∗ ( n ) | .
由微分中值定理得
ln x 1 ( n ) − ln x 1 ∗ ( n ) = 1 θ 1 ( n ) ( x 1 ( n ) − x 1 ∗ ( n ) ) ,
这里 θ 1 ( n ) 位于 x 1 ( n ) 和 x 1 ∗ ( n ) 之间。从而,有
Δ V 1 ( n ) ≤ − ( 1 θ 1 ( n ) − | 1 θ 1 ( n ) − a 1 ( n ) | ) | x 1 ( n ) − x 1 ∗ ( n ) | + b 1 ( n ) α 1 ( n ) B 1 | x 2 ( n ) − x 2 ∗ ( n ) | + b 1 ( n ) β 1 ( n ) x 2 ( n ) B 1 | x 1 ( n ) − x 1 ∗ ( n ) | + b 1 ( n ) β 1 ( n ) x 1 ( n ) B 1 | x 2 ( n ) − x 2 ∗ ( n ) | + c 1 ( n ) | u 1 ( n ) − u 1 ∗ ( n ) | ≤ − min { a 1 l , 2 M 1 + ε − a 1 u } | x 1 ( n ) − x 1 ∗ ( n ) | + b 1 u α 1 u E 1 ε 2 | x 2 ( n ) − x 2 * ( n ) | + b 1 u β 1 u ( M 2 + ε ) E 1 ε 2 | x 1 ( n ) − x 1 ∗ ( n ) | + b 1 u β 1 u ( M 1 + ε ) E 1 ε 2 | x 2 ( n ) − x 2 ∗ ( n ) | + c 1 ( n ) | u 1 ( n ) − u 1 ∗ ( n ) | , (14)
其中 B 1 = ( α 1 ( n ) + β 1 ( n ) x 1 ( n ) + γ 1 ( n ) x 2 ( n ) ) ( α 1 ( n ) + β 1 ( n ) x 1 ∗ ( n ) + γ 1 ( n ) x 2 ∗ ( n ) ) 。
定义
V 2 ( n ) = | ln x 2 ( n ) − ln x 2 ∗ ( n ) | .
与(14)的证明类似
这里 θ 2 ( n ) 位于 x 2 ( n ) 和 x 2 ∗ ( n ) 之间,
B 2 = ( α 2 ( n ) + β 2 ( n ) x 1 ( n ) + γ 2 ( n ) x 2 ( n ) ) ( α 2 ( n ) + β 2 ( n ) x 1 ∗ ( n ) + γ 2 ( n ) x 2 ∗ ( n ) ) .
定义
W i ( n ) = | u i ( n ) − u i ∗ ( n ) | , i = 1 , 2.
则
Δ W i ( n ) ≤ − e i ( n ) | u i ( n ) − u i ∗ ( n ) | + d i ( n ) | x i ( n ) − x i ∗ ( n ) | ≤ − e i l | u i ( n ) − u i ∗ ( n ) | + d i u | x i ( n ) − x i ∗ ( n ) | . (16)
构造李雅普诺夫(Lyapunov)函数
V ( n ) = λ 1 V 1 ( n ) + λ 2 V 2 ( n ) + λ 3 W 1 ( n ) + λ 4 W 2 ( n ) .
由(14) (15) (16)可知,对于任意的 n ≥ T 1
Δ V ( n ) ≤ − ( λ 1 μ 1 ε − λ 1 b 1 u β 1 u ( M 2 + ε ) E 1 ε 2 − λ 2 b 2 u α 2 u E 2 ε 2 − λ 2 b 2 u γ 2 u ( M 2 + ε ) E 2 ε 2 − λ 3 d 1 u ) | x 1 ( n ) − x 1 ∗ ( n ) | − ( λ 2 μ 2 ε − λ 2 b 2 u γ 2 u ( M 1 + ε ) E 2 ε 2 − λ 1 b 1 u α 1 u E 1 ε 2 − λ 1 b 1 u β 2 u ( M 1 + ε ) E 1 ε 2 − λ 4 d 2 u ) | x 2 ( n ) − x 2 ∗ ( n ) | − ( λ 3 e 1 l − λ 1 c 1 u ) | u 1 ( n ) − u 1 ∗ ( n ) | − ( λ 4 e 2 l − λ 2 c 2 u ) | u 2 ( n ) − u 2 ∗ ( n ) | ≤ − δ ( | x 1 ( n ) − x 1 ∗ ( n ) | + | x 2 ( n ) − x 2 ∗ ( n ) | + | u 1 ( n ) − u 1 ∗ ( n ) | + | u 2 ( n ) − u 2 ∗ ( n ) | ) .
把上面的不等式两边同时从 T 1 到k相加,可得
∑ n = T 1 k ( V ( n + 1 ) − V ( n ) ) ≤ − δ ∑ n = T 1 k ( | x 1 ( n ) − x 1 ∗ ( n ) | + | x 2 ( n ) − x 2 ∗ ( n ) | + | u 1 ( n ) − u 1 ∗ ( n ) | + | u 2 ( n ) − u 2 ∗ ( n ) | ) ,
从而
V ( k + 1 ) + δ ∑ n = T 1 k ( | x 1 ( n ) − x 1 ∗ ( n ) | + | x 2 ( n ) − x 2 ∗ ( n ) | + | u 1 ( n ) − u 1 ∗ ( n ) | + | u 2 ( n ) − u 2 ∗ ( n ) | ) ≤ V ( T 1 ) ,
即
∑ n = T 1 k ( | x 1 ( n ) − x 1 ∗ ( n ) | + | x 2 ( n ) − x 2 ∗ ( n ) | + | u 1 ( n ) − u 1 ∗ ( n ) | + | u 2 ( n ) − u 2 ∗ ( n ) | ) ≤ V ( T 1 ) δ .
因此,
∑ n = T 1 + ∞ ( | x 1 ( n ) − x 1 ∗ ( n ) | + | x 2 ( n ) − x 2 ∗ ( n ) | + | u 1 ( n ) − u 1 ∗ ( n ) | + | u 2 ( n ) − u 2 ∗ ( n ) | ) ≤ V ( T 1 ) δ < + ∞ ,
由此可得
lim n → + ∞ ( | x 1 ( n ) − x 1 ∗ ( n ) | + | x 2 ( n ) − x 2 ∗ ( n ) | + | u 1 ( n ) − u 1 ∗ ( n ) | + | u 2 ( n ) − u 2 ∗ ( n ) | ) = 0.
故
lim n → + ∞ | x i ( n ) − x i ∗ ( n ) | = 0 , lim n → + ∞ | u i ( n ) − u i ∗ ( n ) | = 0 , i = 1 , 2.
证毕。
定义3.1 [
H ( f ) = { g ( n , x ) : lim n → ∞ f ( n + τ k , x ) = g ( n , x ) 在 Z × S 上 一 致 成 立 } ,
则 H ( f ) 称为f的壳。
定义3.2 [
E { ε , x } = { τ ∈ Z : | x ( n + τ ) − x ( n ) | < ε , ∀ n ∈ Z }
在Z中是相对稠密的,即存在 l ( ε ) > 0 ,使在每个长度为 l ( ε ) 的区间内都有一个 τ ∈ E { ε , x } ,使得 | x ( n + τ ) − x ( n ) | < ε , ∀ n ∈ Z ,则称序列 x : Z → R 为概周期的, τ 称为 x ( n ) 的 ε -移位数。
引理3.1 [
假设系统(2)是概周期系统,那么它所有的参数 r i ( n ) , a i ( n ) , b i ( n ) , c i ( n ) , d i ( n ) , e i ( n ) , α i ( n ) , β i ( n ) , γ i ( n ) ( i = 1 , 2 ) 都是Z上的概周期序列。由引理3.1,存在时间序列 h k ,当 k → ∞ , h k → ∞ 时,有 r i ( n + h k ) → r i ∗ ( n ) , a i ( n + h k ) → a i ∗ ( n ) , b i ( n + h k ) → b i ∗ ( n ) , c i ( n + h k ) → c i ∗ ( n ) , d i ( n + h k ) → d i ∗ ( n ) , e i ( n + h k ) → e i ∗ ( n ) , α i ( n + h k ) → α i ∗ ( n ) ,
{ x 1 ( n + 1 ) = x 1 ( n ) exp { r 1 ∗ ( n ) − a 1 ∗ ( n ) x 1 ( n ) − b 1 ∗ ( n ) x 2 ( n ) α 1 ∗ ( n ) + β 1 ∗ ( n ) x 1 ( n ) + γ 1 ∗ ( n ) x 2 ( n ) − c 1 ∗ ( n ) u 1 ( n ) } x 2 ( n + 1 ) = x 2 ( n ) exp { r 2 ∗ ( n ) − a 2 ∗ ( n ) x 2 ( n ) − b 2 ∗ ( n ) x 1 ( n ) α 2 ∗ ( n ) + β 2 * ( n ) x 1 ( n ) + γ 2 ∗ ( n ) x 2 ( n ) − c 2 ∗ ( n ) u 2 ( n ) } Δ u 1 ( n ) = − e 1 ∗ ( n ) u 1 ( n ) + d 1 ∗ ( n ) x 1 ( n ) Δ u 2 ( n ) = − e 2 ∗ ( k ) u 2 ( n ) + d 2 ∗ ( n ) x 2 ( n ) (17)
根据概周期函数基本理论 [
引理3.2 [
定理3.1 若条件(H1)和(H2)成立,则系统(2)存在唯一的概周期解且是全局吸引的。
证明 根据引理3.2,只须证明壳方程(17)有唯一的严格正解。步骤如下:先证壳方程(17)至少有一个严格正解,再证每个壳方程只有唯一的的严格正解。
由系统(2)的所有参数的概周期性质,存在整数序列 { h k } ,当 k → ∞ 时, h k → ∞ ,且有 r i ( n + h k ) → r i ∗ ( n ) , a i ( n + h k ) → a i ∗ ( n ) , b i ( n + h k ) → b i ∗ ( n ) , c i ( n + h k ) → c i ∗ ( n ) , d i ( n + h k ) → d i ∗ ( n ) , e i ( n + h k ) → e i ∗ ( n ) , α i ( n + h k ) → α i ∗ ( n ) , β i ( n + h k ) → β i ∗ ( n ) , γ i ( n + h k ) → γ i ∗ ( n ) , i = 1 , 2 ,对 n ∈ Z 一致成立。
根据定理2.1,对壳方程(17)的任一正解 ( x 1 ( n ) , x 2 ( n ) , u 1 ( n ) , u 2 ( n ) ) T 及任意的正数 ε ,存在正整数 N 0 ,满足当 n ≥ N 0 时
m i − ε ≤ x i ( n ) ≤ M i + ε , n i − ε ≤ u i ( n ) ≤ N i + ε , i = 1 , 2
及
0 < inf n ∈ z + x i ( n ) ≤ sup n ∈ z + x i ( n ) < + ∞ , 0 < inf n ∈ z + u i ( n ) ≤ sup n ∈ z + u i ( n ) < + ∞ , i = 1 , 2.
定义 x i k ( n ) = x i ( n + h k ) , u i k ( n ) = u i ( n + h k ) ,其中 n ≥ N 0 − h k , k ∈ Z + , i = 1 , 2 。对任意的正整数q,
取 { x i k ( n ) : k ≥ q } , { u i k ( n ) : k ≥ q } 的子序列,为了讨论方便,子序列仍记为 { x i k ( n ) } 和 { u i k ( n ) } 。易证,当 k → ∞ 时, { x i k ( n ) } , { u i k ( n ) } 在Z的任意有限区间上收敛。因此,存在序列 { y i ( n ) } , { v i ( n ) } , i = 1 , 2 ,使得当 k → ∞ 时 x i k ( n ) → y i ( n ) , u i k ( n ) → v i ( n ) , n ∈ Z 。由于
{ x 1 k ( n + 1 ) = x 1 k ( n ) exp { r 1 ∗ ( n + τ k ) − a 1 ∗ ( n + τ k ) x 1 k ( n ) − b 1 ∗ ( n + τ k ) x 2 k ( n ) α 1 ∗ ( n + τ k ) + β 1 ∗ ( n + τ k ) x 1 k ( n ) + γ 1 ∗ ( n + τ k ) x 2 k ( n ) − c 1 ∗ ( n + τ k ) u 1 k ( n ) } x 2 k ( n + 1 ) = x 2 k ( n ) exp { r 2 ∗ ( n + τ k ) − a 2 ∗ ( n + τ k ) x 2 k ( n ) − b 2 ∗ ( n + τ k ) x 1 k ( n ) α 2 ∗ ( n + τ k ) + β 2 ∗ ( n + τ k ) x 1 k ( n ) + γ 2 ∗ ( n + τ k ) x 2 k ( n ) − c 2 ∗ ( n + τ k ) u 2 k ( n ) } Δ u 1 k ( n ) = − e 1 ∗ ( n + τ k ) u 1 k ( n ) + d 1 ∗ ( n + τ k ) x 1 k ( n ) Δ u 2 k ( n ) = − e 2 ∗ ( n + τ k ) u 2 k ( n ) + d 2 ∗ ( n + τ k ) x 2 k ( n ) .
因此,可推出
{ y 1 ( n + 1 ) = y 1 ( n ) exp { r 1 ∗ ( n ) − a 1 ∗ ( n ) y 1 ( n ) − b 1 ∗ ( n ) y 2 ( n ) α 1 ∗ ( n ) + β 1 ∗ ( n ) y 1 ( n ) + γ 1 ∗ ( n ) y 2 ( n ) − c 1 ∗ ( n ) v 1 ( n ) } y 2 ( n + 1 ) = y 2 ( n ) exp { r 2 ∗ ( n ) − a 2 ∗ ( n ) y 2 ( n ) − b 2 ∗ ( n ) y 1 ( n ) α 2 ∗ ( n ) + β 2 ∗ ( n ) y 1 ( n ) + γ 2 ∗ ( n ) y 2 ( n ) − c 2 ∗ ( n ) v 2 ( n ) } Δ v 1 ( n ) = − e 1 ∗ ( n ) v 1 ( n ) + d 1 ∗ ( n ) y 1 ( n ) Δ v 2 ( n ) = − e 2 ∗ ( n ) v 2 ( n ) + d 2 ∗ ( n ) y 2 ( n ) .
由上式可知, ( y 1 ( n ) , y 2 ( n ) , v 1 ( n ) , v 2 ( n ) ) T 是壳方程(17)的解,且满足 m i − ε ≤ y i ( n ) ≤ M i + ε , n i − ε ≤ v i ( n ) ≤ N i + ε , n ∈ Z , i = 1 , 2 。由正数 ε 的任意性,显然
0 < inf k ∈ z y i ( n ) ≤ sup n ∈ z y i ( n ) < + ∞ , 0 < inf k ∈ z v i ( n ) ≤ sup n ∈ z v i ( n ) < + ∞ , i = 1 , 2.
故系统(2)的每个壳方程至少有一个严格正解。
下面证明壳方程的严格正解的唯一性。设 ( x 1 ∗ ( n ) , x 2 ∗ ( n ) , u 1 ∗ ( n ) , u 2 ∗ ( n ) ) T , ( y 1 ∗ ( n ) , y 2 ∗ ( n ) , v 1 ∗ ( n ) , v 2 ∗ ( n ) ) T 都是(17)的严格正解。构造Lyapunov函数:
V * ( n ) = λ 1 V 1 ∗ ( n ) + λ 2 V 2 ∗ ( n ) + λ 3 W 1 ∗ ( n ) + λ 4 W 2 ∗ ( n ) , n ∈ Z ,
其中
V i ∗ ( n ) = | ln x i ∗ ( n ) − ln y i ∗ ( n ) | , W i ∗ ( k ) = | u i ∗ ( k ) − v i ∗ ( k ) | , i = 1 , 2.
类似于定理2.2的证明,对于 n ∈ Z ,可得
Δ V * ( n ) ≤ − δ ( | x 1 ∗ ( n ) − y 1 ∗ ( n ) | + | x 2 ∗ ( n ) − y 2 ∗ ( n ) | + | u 1 ∗ ( n ) − v 1 ∗ ( n ) | + | u 2 ∗ ( n ) − v 2 ∗ ( n ) | ) .
显然, V * ( n ) 是Z上的非增序列。对上式两边进行从 k ( k < 0 ) 到0的加法运算,
δ ∑ n = k 0 ( | x 1 ∗ ( n ) − y 1 ∗ ( n ) | + | x 2 ∗ ( n ) − y 2 ∗ ( n ) | + | u 1 ∗ ( n ) − v 1 ∗ ( n ) | + | u 2 ∗ ( n ) − v 2 ∗ ( n ) | ) ≤ V * ( k ) − V * ( 0 ) .
因为 V * ( n ) 有界,故
∑ n = − ∞ 0 ( | x 1 ∗ ( n ) − y 1 ∗ ( n ) | + | x 2 ∗ ( n ) − y 2 ∗ ( n ) | + | u 1 ∗ ( n ) − v 1 ∗ ( n ) | + | u 2 ∗ ( n ) − v 2 ∗ ( n ) | ) < + ∞ ,
从而可得
lim n = − ∞ | x i ∗ ( n ) − y i ∗ ( n ) | = 0 , lim n = − ∞ | u i ∗ ( n ) − v i ∗ ( n ) | = 0 , i = 1 , 2. (18)
由(18),存在正整数 K 0 ,当 n ≤ − K 0 时,有
| x i ∗ ( n ) − y i ∗ ( n ) | < ε , | u i ∗ ( n ) − v i ∗ ( n ) | < ε , i = 1 , 2.
从而
V i ∗ ( n ) = 1 θ i * ( n ) | x i ∗ ( n ) − y i ∗ ( n ) | ≤ 1 m i ε , W i ∗ ( n ) ≤ ε , i = 1 , 2.
其中 θ i ∗ ( n ) 介于 x i ∗ ( n ) 和 y i ∗ ( n ) 之间。
令
Q = λ 1 m 1 + λ 2 m 2 + λ 3 + λ 4 ,
则有 V * ( n ) ≤ Q ε , n ≤ − K 0 ,因此 lim n = − ∞ V * ( n ) = 0 。而定理2.2表明, lim n = + ∞ V * ( n ) = 0 。又因为 V * ( n ) 是Z上正的非增序列,因此必有 V * ( n ) ≡ 0 ,即对一切 n ∈ Z , i = 1 , 2 ,有 x i ∗ ( n ) = y i ∗ ( n ) , u i ∗ ( n ) = v i ∗ ( n ) 。从而说明,(17)的严格正解是有唯一的。
综上,系统(2)每个壳方程都有唯一的严格正解。应用引理3.2,系统(2)有唯一的严格正概周期解。结合定理2.2,系统(2)存在唯一的正概周期解且是全局吸引的。证毕。
福建省自然科学基金资助项目(2019J01089);福建省教育厅中青年教师教育科研项目(JAT190976)。
张杰华. 具反馈控制和Beddington-DeAngelis功能反应的离散竞争系统的概周期解Almost Periodic Solutions of a Discrete Competitive System with Feedback Controls and Beddington-DeAngelis Functional Response[J]. 应用数学进展, 2020, 09(08): 1134-1145. https://doi.org/10.12677/AAM.2020.98133
https://doi.org/10.1186/s13662-015-0739-5
https://doi.org/10.1155/2015/658758
https://doi.org/10.1515/math-2016-0099
https://doi.org/10.2307/3866
https://doi.org/10.2307/1936298
https://doi.org/10.1155/2019/4592054
https://doi.org/10.1016/S0096-3003(01)00165-5
https://doi.org/10.1016/j.mcm.2007.02.023
https://doi.org/10.1142/S1793524508000369
https://doi.org/10.1016/0022-0396(69)90045-X