活性氧(Reactive Oxygen Species, ROS)是植物响应外界胁迫信号通路中的重要组分。一氧化氮(Nitric Oxide, NO)是植物生长、发育和衰老中的关键信号分子。与ROS一样,活性氮(Reactive Nitrogen Species, RNS)在植物应对生物胁迫中发挥着重要的作用。此外,NO可以和ROS协同应对病原菌的侵袭。NO通过调控特定靶蛋白半胱氨酸残基的S-亚硝基化来进行信号转导,而亚硝基谷胱甘肽(S-nitrosoglutathione, GSNO)是生物体内具有生物活性的NO形式。亚硝基谷胱甘肽还原酶1 (S-nitrosoglutathione reductase 1, GSNOR1)可以特异性还原GSNO以达到植物体内亚硝基化水平稳态平衡。GSNOR1在植物免疫防御反应中同样具有重要的作用。在这里我们就NO在植物防御反应中的作用的研究进展进行了综述。 Reactive oxygen species (ROS) is an important component of the signalling network that plants use for responding to environmental challenges. NO has an important function as a key signalling molecule in plant growth, development, and senescence, and reactive nitrogen species (RNS), like reactive oxygen species (ROS), also play an important role as signalling molecules in the response to biotic stressc. Similarly, NO is a key mediator, in co-operation with ROS, in the defence response to pathogen attacks in plants. NO regulates diverse cellular signaling through S-nitrosylation of specific Cys residues of target proteins. The intracellular level of S-nitrosoglutathione (GSNO), a major bioactive NO species, is regulated by GSNO reductase 1 (GSNOR1), a key enzyme that regu-lates cellular homeostasis of S-nitrosylation across kingdoms. GSNOR1 also plays an important role in plant immune defense response. Here we review the research progress of the role of NO in plant defense responses.
李贞超. 一氧化氮在植物免疫反应中的作用The Role of Nitric Oxide in Plant Immune Response[J]. 植物学研究, 2020, 09(03): 240-246. https://doi.org/10.12677/BR.2020.93028
参考文献References
Besson-Bard, A., Pugin, A. and Wendehenne, D. (2008) New Insights into Nitric Oxide Signaling in Plants. Annual Review of Plant Biology, 59, 21-39. https://doi.org /10.1146/annurev.arplant.59.032607.092830
Urushitani, M. and Shimohama, S. (2001) The Role of Nitric Oxide in Amyotrophic Lateral Sclerosis. Amyotrophic Lateral Scle-rosis and Other Motor Neuron Disorders, 2, 71-81. https://doi.org /10.1080/146608201316949415
Kone, B.C., Kuncewicz, T., Zhang, W. and Yu, Z.Y. (2003) Protein Interactions with Nitric Oxide Synthases: Controlling the Right Time, the Right Place and the Right Amount of Nitric Oxide. American Journal of Physiology-Renal Physiology, 285, F178-F190. https://doi.org /10.1152/ajprenal.00048.2003
Sahay, S. and Gupta, M. (2017) An Update on Nitric Oxide and Its Benign Role in Plant Responses under Metal Stress. Nitric Oxide, 67, 39-52. https://doi.org /10.1016/j.niox.2017.04.011
Kneeshaw, S., Gelineau, S., Tada, Y., Loake, G.J. and Spoel, S.H. (2014) Selective Protein Denitrosylation Activity of Thioredoxin-h5 Modulates Plant Immunity. Molecular Cell, 56, 153-162. https://doi.org /10.1016/j.molcel.2014.08.003
Tada, Y., Spoel, S.H., Pajerowska-Mukhtar, K., Mou, Z., Song, J., Wang, C. and Dong, X. (2008) Plant Immunity Requires Conformational Changes of NPR1 via S-Nitrosylation and Thioredoxins. Science, 321, 952-956. https://doi.org /10.1126/science.1156970
Huang, D., Huo, J., Zhang, J., Wang, C., Wang, B., Fang, H. and Liao, W. (2019) Protein S-Nitrosylation in Programmed Cell Death in Plants. Cellular and Molecular Life Sciences, 76, 1877-1887. https://doi.org /10.1007/s00018-019-03045-0
Liu, L., Hausladen, A., Zeng, M., Que, L., Heitman, J. and Stamler, J.S. (2001) A Metabolic Enzyme for S-Nitrosothiol Conserved from Bacteria to Humans. Nature, 410, 490-494. https://doi.org /10.1038/35068596
Mata-Perez, C., Sanchez-Calvo, B., Padilla, M.N., Bega-ra-Morales, J.C., Valderrama, R., Corpas, F.J. and Barroso, J.B. (2017) Nitro-Fatty Acids in Plant Signaling: New Key Mediators of Nitric Oxide Metabolism. Redox Biology, 11, 554-561. https://doi.org /10.1016/j.redox.2017.01.002
Baxter, A., Mittler, R. and Suzuki, N. (2014) ROS as Key Players in Plant Stress Signalling. Journal of Experimental Botany, 65, 1229-1240. https://doi.org /10.1093/jxb/ert375
Gupta, D.K., Inouhe, M., Rodriguez-Serrano, M., Romero-Puertas, M.C. and Sandalio, L.M. (2013) Oxidative Stress and Arsenic Toxicity: Role of NADPH Oxidases. Chemosphere, 90, 1987-1996. https://doi.org /10.1016/j.chemosphere.2012.10.066
Yamasaki, H. and Sakihama, Y. (2000) Simultaneous Production of Nitric Oxide and Peroxynitrite by Plant Nitrate Reductase: In Vitro Evidence for the NR-Dependent Formation of Active Nitrogen Species. FEBS Letters, 468, 89-92. https://doi.org /10.1016/S0014-5793(00)01203-5
Lea, U.S., Ten Hoopen, F., Provan, F., Kaiser, W.M., Meyer, C. and Lillo, C. (2004) Mutation of the Regulatory Phosphorylation Site of Tobacco Nitrate Reductase Results in High Nitrite Excretion and NO Emission from Leaf and Root Tissue. Planta, 219, 59-65. https://doi.org /10.1007/s00425-004-1209-6
Rockel, P., Strube, F., Rockel, A., Wildt, J. and Kaiser, W.M. (2002) Regulation of Nitric Oxide (NO) Production by Plant Nitrate Reductase in Vivo and in Vitro. Journal of Experimental Botany, 53, 103-110. https://doi.org /10.1093/jexbot/53.366.103
Vanin, A.F., Svistunenko, D.A., Mikoyan, V.D., Serezhenkov, V.A., Fryer, M.J., Baker, N.R. and Cooper, C.E. (2004) Endogenous Superoxide Production and the Nitrite/Nitrate Ra-tio Control the Concentration of Bioavailable Free Nitric Oxide in Leaves. The Journal of Biological Chemistry, 279, 24100-24107. https://doi.org /10.1074/jbc.M312601200
Bright, J., Desikan, R., Hancock, J.T., Weir, I.S. and Neill, S.J. (2006) ABA-Induced NO Generation and Stomatal Closure in Arabidopsis Are Dependent on H2O2 Synthesis. The Plant Journal, 45, 113-122. https://doi.org /10.1111/j.1365-313X.2005.02615.x
Desikan, R., Cheung, M.K., Bright, J., Henson, D., Hancock, J.T. and Neill, S.J. (2004) ABA, Hydrogen Peroxide and Nitric Oxide Signalling in Stomatal Guard Cells. Journal of Experimental Botany, 55, 205-212. https://doi.org /10.1093/jxb/erh033
Stohr, C., Strube, F., Marx, G., Ullrich, W.R. and Rockel, P. (2001) A Plasma Membrane-Bound Enzyme of Tobacco Roots Catalyses the Formation of Nitric Oxide from Nitrite. Planta, 212, 835-841. https://doi.org /10.1007/s004250000447
Stohr, C. and Stremlau, S. (2006) Formation and Possible Roles of Nitric Oxide in Plant Roots. Journal of Experimental Botany, 57, 463-470. https://doi.org /10.1093/jxb/erj058
Sun, L.R., Zhao, Z.J. and Hao, F.S. (2019) NADPH Oxidases, Essential Players of Hormone Signalings in Plant Development and Response to Stresses. Plant Signaling and Behavior, 14, 1657343. https://doi.org /10.1080/15592324.2019.1657343
Anjum, N., Amreen, A., Tantray, A.Y., Khan, N.A. and Ahmad, A. (2019) Reactive Oxygen Species Detection-Approaches in Plants: Insights into Genetically Encoded FRET-Based Sensors. Journal of Biotechnology, 308, 108-117. https://doi.org /10.1016/j.jbiotec.2019.12.003
Foyer, C.H. and Noctor, G. (2005) Redox Homeostasis and Antioxidant Signaling: A Metabolic Interface between Stress Perception and Physiological Responses. Plant Cell, 17, 1866-1875. https://doi.org /10.1105/tpc.105.033589
Mittler, R., Vanderauwera, S., Suzuki, N., Miller, G., Tognetti, V.B., Vandepoele, K. and Van Breusegem, F. (2011) ROS Signaling: The New Wave? Trends in Plant Science, 16, 300-309. https://doi.org /10.1016/j.tplants.2011.03.007
Bailey-Serres, J. and Mittler, R. (2006) The Roles of Reactive Oxygen Species in Plant Cells. Plant Physiology, 141, 311. https://doi.org /10.1104/pp.104.900191
Airaki, M., Leterrier, M., Mateos, R.M., Valderrama, R., Chaki, M., Barroso, J.B. and Corpas, F.J. (2012) Metabolism of Reactive Oxygen Species and Reactive Nitrogen Species in Pepper (Capsicum an-nuum L.) Plants under Low Temperature Stress. Plant Cell Environment, 35, 281-295. https://doi.org /10.1111/j.1365-3040.2011.02310.x
Monjil, M.S., Shibata, Y., Takemoto, D. and Kawakita, K. (2013) BiS-Aryl Methanone Compound Is a Candidate of Nitric Oxide Producing Elicitor and Induces Resistance in Nicotiana bentha-miana against Phytophthora Infestans. Nitric Oxide, 29, 34-45. https://doi.org /10.1016/j.niox.2012.12.004
Peleg-Grossman, S., Melamed-Book, N., Cohen, G. and Levine, A. (2010) Cytop-lasmic H2O2 Prevents Translocation of NPR1 to the Nucleus and Inhibits the Induction of PR Genes in Arabidopsis. Plant Signaling & Behavior, 5, 1401-1406. https://doi.org /10.4161/psb.5.11.13209
Yun, B.W., Feechan, A., Yin, M., Saidi, N.B., Le Bihan, T., Yu, M. and Loake, G.J. (2011) S-Nitrosylation of NADPH Oxidase Regulates Cell Death in Plant Immunity. Nature, 478, 264-268. https://doi.org /10.1038/nature10427
Suzuki, N., Miller, G., Morales, J., Shulaev, V., Torres, M.A. and Mittler, R. (2011) Respiratory Burst Oxidases: The Engines of ROS Sig-naling. Current Opinion in Plant Biology, 14, 691-699. https://doi.org /10.1016/j.pbi.2011.07.014
Rasul, S., Dubreuil-Maurizi, C., Lamotte, O., Koen, E., Poinssot, B., Alcaraz, G. and Jeandroz, S. (2012) Nitric Oxide Production Mediates Oligogalacturonide-Triggered Immunity and Resistance to Botrytis Cinerea in Arabidopsis thaliana. Plant Cell Environment, 35, 1483-1499. https://doi.org /10.1111/j.1365-3040.2012.02505.x
Ortega-Galisteo, A.P., Rodriguez-Serrano, M., Pazmino, D.M., Gupta, D.K., Sandalio, L.M. and Romero-Puertas, M.C. (2012) S-Nitrosylated Proteins in Pea (Pisum sativum L.) Leaf Peroxisomes: Changes under Abiotic Stress. Journal of Experimental Botany, 63, 2089-2103. https://doi.org /10.1093/jxb/err414
Radi, R. (2013) Protein Tyrosine Nitration: Biochemical Mechanisms and Structural Basis of Functional Effects. Accounts of Chemical Research, 46, 550-559. https://doi.org /10.1021/ar300234c
Romero-Puertas, M.C., Rodriguez-Serrano, M. and Sandalio, L.M. (2013) Protein S-Nitrosylation in Plants under Abiotic Stress: An Overview. Frontiers in Plant Science, 4, 373. https://doi.org /10.3389/fpls.2013.00373
Kotak, S., Larkindale, J., Lee, U., von Koskull-Doring, P., Vierling, E. and Scharf, K.D. (2007) Complexity of the Heat Stress Response in Plants. Current Opinion in Plant Biology, 10, 310-316. https://doi.org /10.1016/j.pbi.2007.04.011
Hess, D.T. and Stamler, J.S. (2012) Regulation by S-nitrosylation of Protein Post-Translational Modification. The Journal of Biological Chemistry, 287, 4411-4418. https://doi.org /10.1074/jbc.R111.285742
Kaya, C., Ashraf, M., Alyemeni, M.N. and Ahmad, P. (2019) The Role of Endogenous Nitric Oxide in Salicylic Acid-Induced Up-Regulation of Ascorbate-Glutathione Cycle Involved in Salinity Tolerance of Pepper (Capsicum annuum L.) Plants. Plant Physiology and Biochemistry, 147, 10-20. https://doi.org /10.1016/j.plaphy.2019.11.040
Clark, D., Durner, J., Navarre, D.A. and Klessig, D.F. (2000) Nitric Oxide Inhibition of Tobacco Catalase and Ascorbate Peroxidase. Molecular Plant-Microbe Interactions, 13, 1380-1384. https://doi.org /10.1094/MPMI.2000.13.12.1380
de Pinto, M.C., Locato, V., Sgobba, A., Romero-Puertas Mdel, C., Gadaleta, C., Delledonne, M. and De Gara, L. (2013) S-Nitrosylation of Ascorbate Peroxidase Is Part of Pro-grammed Cell Death Signaling in Tobacco Bright Yellow-2 Cells. Plant Physiology, 163, 1766-1775. https://doi.org /10.1104/pp.113.222703
Brehelin, C., Meyer, E.H., de Souris, J.P., Bonnard, G. and Meyer, Y. (2003) Resemblance and Dissemblance of Arabidopsis Type II Peroxiredoxins: Similar Sequences for Divergent Gene Expression, Protein Localization and Activity. Plant Physiology, 132, 2045-2057. https://doi.org /10.1104/pp.103.022533
Romero-Puertas, M.C., Laxa, M., Matte, A., Zaninotto, F., Finkemeier, I., Jones, A.M. and Delledonne, M. (2007) S-Nitrosylation of Peroxiredoxin II E Promotes Peroxynitrite-Mediated Tyrosine Nitration. Plant Cell, 19, 4120-4130. https://doi.org /10.1105/tpc.107.055061
Camejo, D., Ortiz-Espín, A., Lázaro, J. J., Romero-Puertas, M. C., Lázaro-Payo, A., Sevilla, F. and Jiménez, A. (2015) Experimental Evidences of the NO Action on a Recombinant PrxII F from Pea Plant and Its Effect Preventing the Citrate Synthase Aggregation. Data in Brief, 3, 108-112. https://doi.org /10.1016/j.dib.2015.02.009
Slaymaker, D.H., Navarre, D.A., Clark, D., del Pozo, O., Martin, G.B. and Klessig, D.F. (2002) The Tobacco Salicylic Acid-Binding Protein 3 (SABP3) Is the Chloroplast Carbonic Anhydrase, which Exhibits Antioxidant Activity and Plays a Role in the Hypersensitive Defense Response. Proceed-ings of the National Academy of Sciences of the United States of America, 99, 11640-11645. https://doi.org /10.1073/pnas.182427699
Kumar, D. and Klessig, D.F. (2003) High-Affinity Salicylic Acid-Binding Protein 2 Is Required for Plant Innate Immunity and Has Salicylic Acid-Stimulated Lipase Activity. Proceedings of the National Academy of Sciences of the United States of America, 100, 16101-16106. https://doi.org /10.1073/pnas.0307162100
Guerra, D., Ballard, K., Truebridge, I. and Vierling, E. (2016) S-Nitrosation of Con-served Cysteines Modulates Activity and Stability of S-Nitrosoglutathione Reductase (GSNOR). Biochemistry, 55, 2452-2464.
Wang, Y.Q., Feechan, A., Yun, B.W., Shafiei, R., Hofmann, A., Taylor, P. and Loake, G.J. (2009) S-Nitrosylation of AtSABP3 Antagonizes the Expression of Plant Immunity. The Journal of Biological Chemistry, 284, 2131-2137. https://doi.org /10.1074/jbc.M806782200
Wu, Y., Zhang, D., Chu, J.Y., Boyle, P., Wang, Y., Brindle, I.D. and Despres, C. (2012) The Arabidopsis NPR1 Protein Is a Receptor for the Plant Defense Hormone salicylic Acid. Cell Reports, 1, 639-647. https://doi.org /10.1016/j.celrep.2012.05.008
Mou, Z., Fan, W. and Dong, X. (2003) Inducers of Plant Sys-temic Acquired Resistance Regulate NPR1 Function through Redox Changes. Cell, 113, 935-944. https://doi.org /10.1016/S0092-8674(03)00429-X
Frungillo, L., Skelly, M.J., Loake, G.J., Spoel, S.H. and Salgado, I. (2014) S-Nitrosothiols Regulate Nitric Oxide Production and Storage in Plants through the Nitrogen Assimilation Pathway. Nature Communications, 5, 5401. https://doi.org /10.1038/ncomms6401
Feechan, A., Kwon, E., Yun, B.W., Wang, Y., Pallas, J.A. and Loake, G.J. (2005) A Central Role for S-Nitrosothiols in Plant Disease Resistance. Proceedings of the National Academy of Sciences of the United States of America, 102, 8054-8059. https://doi.org /10.1073/pnas.0501456102
Lee, U., Wie, C., Fernandez, B.O., Feelisch, M. and Vierling, E. (2008) Modulation of Nitrosative Stress by S-Nitrosoglutathione Reductase Is Critical for Thermotolerance and Plant Growth in Arabidopsis. Plant Cell, 20, 786-802. https://doi.org /10.1105/tpc.107.052647
Rustérucci, C., Espunya, M.C., Díaz, M., Chabannes, M. and Martínez, M.C. (2007) S-Nitrosoglutathione Reductase Affords Protection against Pathogens in Arabidopsis, both Locally and Systemically. Plant Physiology, 143, 1282-1292. https://doi.org /10.1104/pp.106.091686
Chaki, M., Fernández-Ocaña, A.M., Valderrama, R., Carreras, A., Esteban, F.J., Luque, F. and Barroso, J.B. (2009) Involvement of Reactive Nitrogen and Oxygen Species (RNS and ROS) in Sunflower-Mildew Interaction. Plant and Cell Physiology, 50, 665-679. https://doi.org /10.1093/pcp/pcp039
Kubienova, L., Ticha, T., Jahnova, J., Luhova, L., Mieslerova, B. and Petrivalsky, M. (2014) Effect of Abiotic Stress Stimuli on S-Nitrosoglutathione Reductase in Plants. Planta, 239, 139-146. https://doi.org /10.1007/s00425-013-1970-5
Kovacs, I., Durner, J. and Lindermayr, C. (2015) Crosstalk between Nitric Oxide and Glutathione Is Required for Nonexpressor of Pathogenesis-Related Genes 1 (NPR1)-Dependent Defense Signaling in Arabidopsis thaliana. The New phytologist, 208, 860-872. https://doi.org /10.1111/nph.13502
Yun, B.-W., Skelly, M., Yin, M., Yu, M., Mun, B.-G., Lee, S.-U. and Loake, G. (2016) Nitric Oxide and S-Nitrosoglutathione Function Additively during Plant Immunity. The New phytologist, 211, 516-526. https://doi.org /10.1111/nph.13903
Jahnová, J., Luhová, L. and Petřivalský, M. (2019) S-Nitrosoglutathione Reductase-The Master Regulator of Protein S-Nitrosation in Plant NO Signaling. Plants, 8, 48. https://doi.org /10.3390/plants8020048
Chen, R. Q., Sun, S.L., Wang, C., Li, Y.S., Liang, Y., An, F. Y. and Zuo, J.R. (2009) The Arabidopsis PARAQUAT RESISTANT2 Gene Encodes an S-Nitrosoglutathione Reductase that Is a Key Regulator of Cell Death. Cell Research, 19, 1377-1387. https://doi.org /10.1038/cr.2009.117