类胡萝卜素是一种天然的功能性色素,植物中类胡萝卜素合成代谢调控是个复杂的过程,受多层次、多水平因素的调控;本文阐述了转录水平、环境因子、质体发育和激素对植物积累类胡萝卜素的调控机制。 Carotenoids are a kind of natural functional pigments. The anabolic regulation of carotenoids in plants is a complex process regulated by many levels and factors. This article describes that the transcriptional level, environmental factors, plastid development, and hormones regulate the ac-cumulation of carotenoids in plants.
吴园园,于玉凤,王怡惠. 植物类胡萝卜素合成代谢调控机制研究进展Research Progress in Anabolic Control Mechanisms of Plant Carotenoids[J]. 植物学研究, 2020, 09(03): 217-225. https://doi.org/10.12677/BR.2020.93026
参考文献References
Nisar, N., Li, L., Lu, S., et al. (2015) Carotenoid Metabolism in Plants. Molecular Plant, 8, 68-82. https://doi.org/10.1016/j.molp.2014.12.007
Llorente, B., Martinez-Garcia, J.F., Stange, C., et al. (2017) Il-luminating Colors: Regulation of Carotenoid Biosynthesis and Accumulation by Light. Current Opinion in Plant Bi-ology, 37, 49-55. https://doi.org/10.1016/j.pbi.2017.03.011
DellaPenna, D. and Pogson, B.J. (2006) Vitamin Synthesis in Plants: Tocopherols and Carotenoids. Annual Review of Plant Biology, 57, 711-738. https://doi.org/10.1146/annurev.arplant.56.032604.144301
Silva, J.S., Chaves, G.V., Stenzel, A.P., et al. (2017) Improvement of Anthropometric and Biochemical, but Not of Vitamin A, Status in Adolescents Who Undergo Roux-en-Y Gastric Bypass: A 1-Year Follow up Study. Surgery for Obesity and Related Diseases, 13, 227-233. https://doi.org/10.1016/j.soard.2016.09.002
Sandmann, G. (2015) Carotenoids of Biotechnological Importance. Advances in Biochemical Engineering/Biotechnology, 148, 449-467. https://doi.org/10.1007/10_2014_277
Fassett, R.G. and Coombes, J.S. (2012) Astaxanthin in Cardiovascular Health and Disease. Molecules, 17, 2030-2048. https://doi.org/10.3390/molecules17022030
Mordente, A., Guantario, B., Meucci, E., et al. (2011) Lycopene and Cardiovascular Diseases: An Update. Current Medicinal Chemistry, 18, 1146-1163. https://doi.org/10.2174/092986711795029717
Sun, T., Yuan, H., Cao, H., et al. (2018) Carotenoid Metabol-ism in Plants: The Role of Plastids. Molecular Plant, 11, 58-74. https://doi.org/10.1016/j.molp.2017.09.010
Moise, A.R., Al-Babili, S. and Wurtzel, E.T. (2014) Mechanistic Aspects of Carotenoid Biosynthesis. Chemical Reviews, 114, 164-193. https://doi.org/10.1021/cr400106y
Yuan, H., Zhang, J., Nageswaran, D., et al. (2015) Carotenoid Metabolism and Regulation in Horticultural Crops. Horticulture Research, 2, Article No.: 15036. https://doi.org/10.1038/hortres.2015.36
Zhang, J., Tao, N., Xu, Q., et al. (2009) Functional Characterization of Citrus PSY Gene in Hongkong Kumquat (Fortunella hindsii Swingle). Plant Cell Reports, 28, 1737-1746. https://doi.org/10.1007/s00299-009-0774-3
Fraser, P.D., Enfissi, E.M., Halket, J.M., et al. (2007) Manipula-tion of Phytoene Levels in Tomato Fruit: Effects on Isoprenoids, Plastids, and Intermediary Metabolism. Plant Cell, 19, 3194-3211. https://doi.org/10.1105/tpc.106.049817
Maass, D., Arango, J., Wust, F., et al. (2009) Carotenoid Crystal Formation in Arabidopsis and Carrot Roots Caused by Increased Phytoene Synthase Protein Levels. PLoS One, 4, e6373. https://doi.org/10.1371/journal.pone.0006373
程珍霞, 胡海涛, 杨莉, 等. 超表达牛奶子EutPDS提高番茄果实番茄红素含量[J]. 林业科学, 2017, 53(1): 62-69.
Lu, S., Zhang, Y., Zheng, X., et al. (2016) Molecular Characterization, Critical Amino Acid Identification, and Promoter Analysis of a Lycopene β-Cyclase Gene from Citrus. Tree Genetics and Genomes, 12, 106. https://doi.org/10.1007/s11295-016-1066-z
Zhang, L., Ma, G., Shirai, Y., et al. (2012) Expression and Func-tional Analysis of Two Lycopene Beta-Cyclases from Citrus Fruits. Planta, 236, 1315-1325. https://doi.org/10.1007/s00425-012-1690-2
Zeng, J., Wang, C., Chen, X., et al. (2015) The Lycopene Be-ta-Cyclase Plays a Significant Role in Provitamin A Biosynthesis in Wheat Endosperm. BMC Plant Biology, 15, 112. https://doi.org/10.1186/s12870-015-0514-5
Diretto, G., Tavazza, R., Welsch, R., et al. (2006) Metabolic En-gineering of Potato Tuber Carotenoids through Tuber-Specific Silencing of Lycopene Epsilon Cyclase. BMC Plant Bi-ology, 6, 13. https://doi.org/10.1186/1471-2229-6-13
Yu, B., Lydiate, D.J., Young, L.W., et al. (2008) Enhancing the Carotenoid Content of Brassica napus Seeds by Downregulating Lycopene Epsilon Cyclase. Transgenic Research, 17, 573-585. https://doi.org/10.1007/s11248-007-9131-x
Ng, M. and Yanofsky, M.F. (2001) Function and Evolution of the Plant MADS-Box Gene Family. Nature Reviews Genetics, 2, 186-195. https://doi.org/10.1038/35056041
Martel, C., Vrebalov, J., Tafelmeyer, P., et al. (2011) The Tomato MADS-Box Transcription Factor RIPENING INHIBITOR Interacts with Promoters Involved in Numerous Ripening Processes in a COLORLESS NONRIPENING-Dependent Manner. Plant Physiology, 157, 1568-1579. https://doi.org/10.1104/pp.111.181107
Luo, Z., Zhang, J., Li, J., et al. (2013) A STAY-GREEN Protein SlSGR1 Regulates Lycopene and Beta-Carotene Accumulation by Interacting Directly with SlPSY1 during Ripening Processes in Tomato. New Phytologist, 198, 442-452. https://doi.org/10.1111/nph.12175
Hinz, M., Wilson, I.W., Yang, J., et al. (2010) Arabidopsis RAP2.2: An Ethylene Response Transcription Factor That Is Important for Hypoxia Survival. Plant Physiology, 153, 757-772. https://doi.org/10.1104/pp.110.155077
Toledo-Ortiz, G., Huq, E. and Rodriguez-Concepcion, M. (2010) Di-rect Regulation of Phytoene Synthase Gene Expression and Carotenoid Biosynthesis by Phytochrome-Interacting Fac-tors. Proceedings of the National Academy of Sciences of the United States of America, 107, 11626-11631. https://doi.org/10.1073/pnas.0914428107
Llorente, B., D’Andrea, L., Ruiz-Sola, M.A., et al. (2016) Tomato Fruit Carotenoid Biosynthesis Is Adjusted to Actual Ripening Progression by a Light-Dependent Mechanism. Plant Journal, 85, 107-119. https://doi.org/10.1111/tpj.13094
Lu, S., Zhang, Y., Zhu, K., et al. (2018) The Citrus Transcription Factor CsMADS6 Modulates Carotenoid Metabolism by Directly Regulating Carotenogenic Genes. Plant Physiology, 176, 2657-2676. https://doi.org/10.1104/pp.17.01830
Liu, L., Shao, Z., Zhang, M., et al. (2015) Regulation of Carotenoid Metabolism in Tomato. Molecular Plant, 8, 28-39. https://doi.org/10.1016/j.molp.2014.11.006
Pizarro, L. and Stange, C. (2009) Light-Dependent Regulation of Carotenoid Biosynthesis in Plants. Ciencia e Investigación Agraria, 36, 143-162. https://doi.org/10.4067/S0718-16202009000200001
Ma, G., Zhang, L., Kato, M., et al. (2012) Effect of Blue and Red LED Light Irradiation on Beta-Cryptoxanthin Accumulation in the Flavedo of Citrus Fruits. Journal of Agricultural and Food Chemistry, 60, 197-201. https://doi.org/10.1021/jf203364m
Zhang, L., Ma, G., Yamawaki, K., et al. (2015) Effect of Blue LED Light Intensity on Carotenoid Accumulation in Citrus Juice Sacs. Journal of Plant Physiology, 188, 58-63. https://doi.org/10.1016/j.jplph.2015.09.006
Robertson, G.H., Mahoney, N.E., Goodman, N., et al. (1995) Regulation of Lycopene Formation in Cell Suspension Culture of VFNT Tomato (Lycopersicon esculentum) by CPTA, Growth Regulators, Sucrose, and Temperature. Journal of Experimental Botany, 46, 13-23. https://doi.org/10.1093/jxb/46.6.667
刘雪静, 王艳, 刘童光, 等. 低温对番茄果实转色关键酶的影响[J]. 中国瓜菜, 2015, 28(1): 19-22.
崔彤彤. 温度与SA对龙眼培养细胞类黄酮和类胡萝卜素的影响[D]: [硕士学位论文]. 福州: 福建农林大学, 2017.
Yang, L.Y., Yang, S.L., Li, J.Y., et al. (2018) Effects of Different Growth Temperatures on Growth, Development, and Plastid Pigments Metabolism of Tobacco (Nicotiana tabacum L.) Plants. Botanical Studies, 59, Article No.: 5. https://doi.org/10.1186/s40529-018-0221-2
Zhang, Z., Liu, L., Zhang, M., et al. (2014) Effect of Carbon Dioxide Enrichment on Health-Promoting Compounds and Organoleptic Properties of Tomato Fruits Grown in Greenhouse. Food Chemistry, 153, 157-163. https://doi.org/10.1016/j.foodchem.2013.12.052
张朋, 张文会, 苗秀莲, 等. CO2浓度倍增对大豆生长及光合作用的影响[J]. 大豆科学, 2010(1): 64-67.
张志明. 二氧化碳施肥对番茄果实品质的影响[D]: [硕士学位论文]. 杭州: 浙江大学, 2012.
Dhami, N., Tissue, D.T. and Cazzonelli, C.I. (2018) Leaf-Age Dependent Re-sponse of Carotenoid Accumulation to Elevated CO2 in Arabidopsis. Archives of Biochemistry and Biophysics, 647, 67-75. https://doi.org/10.1016/j.abb.2018.03.034
Levin, I., de Vos, C.H.R., Tadmor, Y., et al. (2006) High Pigment Tomato Mutants—More than Just Lycopene (a Review). Israel Journal of Plant Sciences, 54, 179-190. https://doi.org/10.1560/IJPS_54_3_179
Sauret-Gueto, S., Botella-Pavia, P., Flores-Perez, U., et al. (2006) Plastid Cues Posttranscriptionally Regulate the Accumulation of Key Enzymes of the Methylerythritol Phosphate Pathway in Arabidopsis. Plant Physiology, 141, 75-84. https://doi.org/10.1104/pp.106.079855
Schweiggert, R.M. and Carle, R. (2017) Carotenoid Deposition in Plant and Animal Foods and Its Impact on Bioavailability. Critical Reviews in Food Science and Nutrition, 57, 1807-1830.
Li, L., Yuan, H., Zeng, Y., et al. (2016) Plastids and Carotenoid Accumulation. Subcellular Bioche-mistry, 79, 273-293. https://doi.org/10.1007/978-3-319-39126-7_10
Chayut, N., Yuan, H., Ohali, S., et al. (2017) Distinct Me-chanisms of the ORANGE Protein in Controlling Carotenoid Flux. Plant Physiology, 173, 376-389. https://doi.org/10.1104/pp.16.01256
Yuan, H., Owsiany, K., Sheeja, T.E., et al. (2015) A Single Amino Acid Substitution in an ORANGEp Promotes Carotenoid Overaccumulation in Arabidopsis. Plant Physiology, 169, 421-431. https://doi.org/10.1104/pp.15.00971
Lu, S., Van Eck, J., Zhou, X., et al. (2006) The Cauliflower Or Gene Encodes a DnaJ Cysteine-Rich Domain-Containing Protein That Mediates High Levels of Beta-Carotene Accumulation. Plant Cell, 18, 3594-3605. https://doi.org/10.1105/tpc.106.046417
Li, L., Yang, Y., Xu, Q., et al. (2012) The Or Gene Enhances Carote-noid Accumulation and Stability during Post-Harvest Storage of Potato Tubers. Molecular Plant, 5, 339-352. https://doi.org/10.1093/mp/ssr099
Gao, H.Y., Zhu, B.Z., Zhu, H.L., et al. (2007) Effect of Suppression of Ethylene Biosynthesis on Flavor Products in Tomato Fruits. Russian Journal of Plant Physiology, 54, 80-88. https://doi.org/10.1134/S1021443707010128
Gao, H., Zhu, H., Shao, Y., et al. (2008) Lycopene Accumula-tion Affects the Biosynthesis of Some Carotenoid-Related Volatiles Independent of Ethylene in Tomato. Journal of Integrative Plant Biology, 50, 991-996. https://doi.org/10.1111/j.1744-7909.2008.00685.x
Vrebalov, J., Pan, I.L., Arroyo, A.J., et al. (2009) Fleshy Fruit Expansion and Ripening Are Regulated by the Tomato SHATTERPROOF Gene TAGL1. Plant Cell, 21, 3041-3062. https://doi.org/10.1105/tpc.109.066936
Chung, M.Y., Vrebalov, J., Alba, R., et al. (2010) A Tomato (Solanum lycopersicum) APETALA2/ERF Gene, SlAP2a, Is a Negative Regulator of Fruit Ripening. Plant Journal, 64, 936-947. https://doi.org/10.1111/j.1365-313X.2010.04384.x
Sun, L., Yuan, B., Zhang, M., et al. (2012) Fruit-Specific RNAi-Mediated Suppression of SlNCED1 Increases Both Lycopene and Beta-Carotene Contents in Tomato Fruit. Journal of Experimental Botany, 63, 3097-3108. https://doi.org/10.1093/jxb/ers026
邓昌哲, 秦于玲, 李开绵, 等. 外源ABA对木薯叶片β-胡萝卜素合成通路相关基因表达的影响[J]. 热带作物学报, 2017, 38(4): 667-672.
凌亚杰, 杨子, 莫琴, 等. 外源蔗糖和ABA对草莓生物活性物质及抗氧化能力的影响[J]. 基因组学与应用生物学, 2019(4): 1712-1718.
李家寅. 生长素及生长素–乙烯互作调控番茄果实成熟的效应与机理[D]: [博士学位论文]. 杭州: 浙江大学, 2017.
Su, L., Diretto, G., Purgatto, E., et al. (2015) Carotenoid Accumulation during Tomato Fruit Ripening Is Modulated by the Auxin-Ethylene Balance. BMC Plant Biology, 15, 114. https://doi.org/10.1186/s12870-015-0495-4
Rosas-Saavedra, C. and Stange, C. (2016) Biosynthesis of Caro-tenoids in Plants: Enzymes and Color. Subcellular Biochemistry, 79, 35-69. https://doi.org/10.1007/978-3-319-39126-7_2
Lu, S. and Li, L. (2008) Carotenoid Metabolism: Biosynthesis, Regulation, and Beyond. Journal of Integrative Plant Biology, 50, 778-785. https://doi.org/10.1111/j.1744-7909.2008.00708.x
朱运钦, 乔改梅, 王志强. 植物类胡萝卜素代谢调控的研究进展[J]. 分子植物育种, 2016(2): 471-474.