肿瘤的侵袭和转移是极其复杂的过程,目前机制尚不明确,涉及了众多基因和信号通路。缺氧诱导因子-1α (HIF-1α)和血管内皮生长因子(VEGF)是该通路中重要的转录因子,它们通过各种机制深度参与肿瘤的侵袭和转移过程,包括参与缺氧条件下的血管生成及多种调控肿瘤侵袭和转移的信号通路,与患者的不良预后密切相关。本文旨在阐明HIF-1α和VEGF之间的相互作用和调节机制,以及在肿瘤侵袭和转移中可能的临床影响。 Tumor invasion and metastasis is an extremely complex process; the mechanism is not clear, involving multiple genes and signal pathways. At present, hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) are important transcription factors. They are deeply involved in the process of tumor invasion and metastasis through various mechanisms, including angiogenesis under hypoxia and various signal pathways regulating tumor invasion and metastasis, which are closely related to the poor prognosis of patients. The purpose of this study is to clarify the interaction and regulatory mechanism between HIF-1α and VEGF, as well as the possible clinical effects on tumor invasion and metastasis.
崔昌裕,赵 红. HIF-1α、VEGF与肿瘤的侵袭和转移HIF-1α, VEGF and Tumor Invasion and Metastasis[J]. 临床医学进展, 2020, 10(05): 811-816. https://doi.org/10.12677/ACM.2020.105124
参考文献References
(2018) Global Cancer Observatory: Cancer Today. International Agency for Research on Cancer, Lyon. https://gco.iarc.fr/today
Vaupel, P. and Multhoff, G. (2020) Fatal Alliance of Hypoxia-/HIF-1α-Driven Microenvironmental Traits Promoting Cancer Progression. Advances in Experimental Medicine and Biology, 1232, 169-176. https://doi.org/10.1007/978-3-030-34461-0_21
Masoud, G.N. and Li, W. (2015) HIF-1α Pathway: Role, Regulation and Intervention for Cancer Therapy. Acta Pharmaceutica Sinica B, 5, 378-389. https://doi.org/10.1016/j.apsb.2015.05.007
Albadari, N., Deng, S.S. and Li, W. (2019) The Transcriptional Factors HIF-1 and HIF-2 and Their Novel Inhibitors in Cancer Therapy. Expert Opinion on Drug Discovery, 14, 667-682. https://doi.org/10.1080/17460441.2019.1613370
Fu, J.-D., Yao, J.-J., Wang, H., Cui, W.-G., Leng, J., Ding, L.-Y. and Fan, K.-Y. (2019) Effects of EGCG on Proliferation and Apoptosis of Gastric Cancer SGC7901 Cells via Down-Regulation of HIF-1α and VEGF under a Hypoxic State. European Review for Medical and Pharmacological Sciences, 23, 155-161.
Sho, K., Minoru, K., Yoko, G., et al. (2018) Regulatory Mechanisms of Hypoxia-Inducible Factor 1 Activity: Two Decades of Knowledge. Cancer Sciences, 109, 560-571. https://doi.org/10.1111/cas.13483
LaGory, E.L. and Giaccia, A.J. (2016) The Ever-Expanding Role of HIF in Tumour and Stromal Biology. Nature Cell Biology, 18, 356-365. https://doi.org/10.1038/ncb3330
Aditi, N., Dhar, R.A., Niranjan, R., et al. (2020) HIF1α-Dependent Upregulation of ATAD2 Promotes Proliferation and Migration of Stomach Cancer Cells in Response to Hypoxia. Biochemical and Biophysical Research Communications, 523, 916-923. https://doi.org/10.1016/j.bbrc.2019.12.130
Gospodarowicz, D., Abraham, J.A. and Schilling, J. (1989) Isolation and Characterization of a Vascular Endothelial Cell Mitogen Produced by Pituitary-Derived Folliculo Stellate Cells. Proceedings of the National Academy of Sciences of the United States of America, 86, 7311-7315. https://doi.org/10.1073/pnas.86.19.7311
Yang Tai, Gao, J.H., Wen, S.L., Tong, H., Huang, Z.Y. and Tang, C.-W. (2016) Su2010 Correlations between VEGF-A Expression and Prognosis in Patients with Gastric Adenocarcinoma. Gastroenterology, 150, S610. https://doi.org/10.1016/S0016-5085(16)32092-3
徐越明, 童玥, 姚文兵. 血管内皮生长因子B研究进展[J]. 药学进展, 2017, 41(6): 458-464. https://doi.org/10.1007/s11623-017-0811-2
Macedo, F., Ladeira, K., Longatto-Filho, A. and Martins, S.F. (2017) Gastric Cancer and Angiogenesis: Is VEGF a Useful Biomarker to Assess Progression and Remission? Journal of Gastric Cancer, 17, 1. https://doi.org/10.5230/jgc.2017.17.e1
闻哲, 张霓霓, 黄桂林. 血管生成相关因子在口腔鳞癌中的研究进展[J]. 中国医药导报, 2016, 13(31): 57-60.
Huang, Y.Q., Lin, D. and Taniguchi, C.M. (2017) Hypoxia Inducible Factor (HIF) in the Tumor Microenvironment: Friend or Foe? Science China Life Sciences, 60(10). https://doi.org/10.1007/s11427-017-9178-y
Martin, J.D., Fukumura, D., Duda, D.G., Boucher, Y. and Jain, R.K. (2016) Corrigendum: Reengineering the Tumor Microenvironment to Alleviate Hypoxia and Overcome Cancer Heterogeneity. Cold Spring Harbor Perspectives in Medicine, 6, a027094. https://doi.org/10.1101/cshperspect.a031195
Ou, X.-W., Wang, R.-X., Kang, M.-F., et al. (2018) Hypoxia Promotes Migration and Invasion of Gastric Cancer Cells by Activating HIF-1α and Inhibiting NDRG2 Associated Signaling Pathway. European Review for Medical and Pharmacological Sciences, 22, 8237-8247.
Zhang, J.J., Xu, J., Dong, Y.H. and Huang, B. (2018) Down-Regulation of HIF-1α Inhibits the Proliferation, Migration, and Invasion of Gastric Cancer by Inhibiting PI3K/AKT Pathway and VEGF Expression. Bioscience Reports, 38, Article No.: BSR20180741. https://doi.org/10.1042/BSR20180741
Macedo, F., Ladeira, K., Longatto-Filho, A., et al. (2017) Gastric Cancer and Angiogenesis: Is VEGF a Useful Biomarker to Assess Progression and Remission? Journal of Gastric Cancer, 17, 1-10. https://doi.org/10.5230/jgc.2017.17.e1
Felix, A.S., Lenz, P., Pfeiffer, R.M., et al. (2016) Relationships between Mammographic Density, Tissue Microvessel Density, and Breast Biopsy Diagnosis. Breast Cancer Research, 18, 88. https://doi.org/10.1186/s13058-016-0746-9
Mahase, S., Rattenni, R.N., Wesseling, P., Leenders, W., Baldotto, C., Jain, R. and Zagzag, D. (2017) Hypoxia-Mediated Mechanisms Associated with Antiangiogenic Treatment Resistance in Glioblastomas. The American Journal of Pathology, 187(5). https://doi.org/10.1016/j.ajpath.2017.01.010
Wang, J.-C., Li, G.-Y., Li, P.-P., et al. (2017) Suppression of Hypoxia-Induced Excessive Angiogenesis by Metformin via Elevating Tumor Blood Perfusion. Oncotarget, 8, 73892-73904. https://doi.org/10.18632/oncotarget.18029
Aneese, A.M., Manuballa, V., Amin, M., et al. (2017) Bladder Urothelial Carcinoma Extending to Rectal Mucosa and Presenting with Rectal Bleeding. World Journal of Gastrointestinal Endoscopy, 9, 282. https://doi.org/10.4253/wjge.v9.i6.282
曹辉琼, 蔡清红. 缺氧诱导因子-1α及血管内皮生长因子的表达与胃癌血管生成的关系[J]. 吉林医学, 2020, 41(1): 184-185.
Shunichi, Y., Takatoshi, N., Yuichi, K., Kazuhide, H. and Michio, A. (2015) Indomethacin-Induced Intestinal Epithelial Cell Damage Is Mediated by pVHL Activation through the Degradation of Collagen I and HIF-1α. Biochemical and Biophysical Research Communications, 468, 671-676. https://doi.org/10.1016/j.bbrc.2015.11.014
Jayant, D., Shweta, K., Kumar, R.S., et al. (2018) Centchroman Regulates Breast Cancer Angiogenesis via Inhibition of HIF-1α/VEGFR2 Signalling Axis. Life Sciences, 193, 9-19. https://doi.org/10.1016/j.lfs.2017.11.045
Vojnovic, N., Loman, N., Goldrath, A.W., et al. (2017) An HIF-1α/VEGF-A Axis in Cytotoxic T Cells Regulates Tumor Progression. Cancer Cell, 32, 669.e5-683.e5. https://doi.org/10.1016/j.ccell.2017.10.003
Joseph, J.P., Harishankar, M.K., Pillai, A.A. and Devi, A. (2018) Hypoxia Induced EMT: A Review on the Mechanism of Tumor Progression and Metastasis in OSCC. Oral Oncology, 80, 23-32. https://doi.org/10.1016/j.oraloncology.2018.03.004
Tam, S.Y., Wu, V.W.C. and Law, H.K.W. (2020) Hypoxia-Induced Epithelial-Mesenchymal Transition in Cancers: HIF-1α and Beyond. Frontiers in Oncology, 10, 486. https://doi.org/10.3389/fonc.2020.00486
Iacovelli, R., Sternberg, C.N., Porta, C., et al. (2015) Inhibition of the VEGF/VEGFR Pathway Improves Survival in Advanced Kidney Cancer: A Systematic Review and Meta-Analysis. Current Drug Targets, 16, 164-170. https://doi.org/10.2174/1389450115666141120120145
Tátrai, E., Bartal, A., Gacs, A., et al. (2017) Cell Type-Dependent HIF1α-Mediated Effects of Hypoxia on Proliferation, Migration and Metastatic Potential of Human Tumor Cells. Oncotarget, 8, 44498-44510. https://doi.org/10.18632/oncotarget.17806
周晓黎, 舒磊, 廖艳, 石拓, 梅智谋, 杨家耀, 时昭红. PI3K/AKT通路在低氧环境下对结肠癌细胞HIF-1α及糖酵解的作用[J]. 华中科技大学学报(医学版), 2018, 47(2): 203-206.
Ader, I., Gstalder, C., Bouquerel, P., et al. (2015) Neutralizing S1P Inhibits Intratumoral Hypoxia, Induces Vascular Remodelling and Sensitizes to Chemotherapy in Prostate Cancer. Oncotarget, 6, 13803-13821. https://doi.org/10.18632/oncotarget.3144
Yeh, Y.H., Wang, S.W., Yeh, Y.C., et al. (2016) Rhapontigenin Inhibits TGF-β-Mediated Epithelial Mesenchymal Transition via the PI3K/AKT/m TOR Pathway and Is Not Associated with HIF-1α Degradation. Oncology Reports, 35, 2887-2895. https://doi.org/10.3892/or.2016.4664
Liu, L. and Xiao, W. (2017) Notch1 Signaling Induces Epithelial-Mesenchymal Transition in Lens Epithelium Cells during Hypoxia. BMC Ophthalmology, 17, 135. https://doi.org/10.1186/s12886-017-0532-1
Pinato, D.J., Black, J.R., Trousil, S., Dina, R.E., Trivedi, P., Mauri, F.A. and Sharma, R. (2017) Programmed Cell Death Ligands Expression in Phaeochromocytomas and Paragangliomas: Relationship with the Hypoxic Response, Immune Evasion and Malignant Behavior. OncoImmunology, 6, e1358332. https://doi.org/10.1080/2162402X.2017.1358332
Zhao, Z., Li, Y.K., Shukla, R., Liu, H., Jain, A., Barve, A. and Cheng, K. (2019) Development of a Biocompatible Copolymer Nanocomplex to Deliver VEGF siRNA for Triple Negative Breast Cancer. Theranostics, 9, 4508-4524. https://doi.org/10.7150/thno.34314
Bhattacharya, R., Fan, F., Wang, R., et al. (2017) Intracrine VEGF Signalling Mediates Colorectal cancer cell Migration and Invasion. British Journal of Cancer, 117, 848-855. https://doi.org/10.1038/bjc.2017.238
Bhattacharya, R., Ye, X.-C., Wang, R., Ling, X., McManus, M., Fan, F., Boulbes, D. and Ellis, L.M. (2016) Intracrine VEGF Signaling Mediates the Activity of Prosurvival Pathways in Human Colorectal Cancer Cells. Cancer Research, 76, 3015-3026 https://doi.org/10.1158/0008-5472.CAN-15-1605
Ridiandries, A., Tan, J.T. and Bursill, C.A. (2016) The Role of CC-Chemokines in the Regulation of Angiogenesis. Int J Mol Sci., 17(11). https://doi.org/10.3390/ijms17111856
Lutske, L., van Diest, P., van der Groep, P., et al. (2017) Expression of HIF-1α in Medullary Thyroid Cancer Identifies a Subgroup with Poor Prognosis. Oncotarget, 8, 28650-28659. https://doi.org/10.18632/oncotarget.15622
Veli, B., Kemal, D., Oktay, B., et al. (2015) Predictive Significance of VEGF and HIF-1α Expression in Patients with Metastatic Colorectal Cancer Receiving Chemotherapy Combinations with Bevacizumab. Asian Pacific Organization for Cancer Prevention, 16, 6149-6154. https://doi.org/10.7314/APJCP.2015.16.14.6149
Jiang, S., Gao, Y., Yu, Q.H., Li, M., Cheng, X., Hu, S.B., Song, Z.F. and Zheng, Q.C. (2020) P-21-Activated Kinase 1 Contributes to Tumor Angiogenesis upon Photodynamic Therapy via the HIF-1α/VEGF Pathway. Biochemical and Biophysical Research Communications, 526, 98-104. https://doi.org/10.1016/j.bbrc.2020.03.054