为提高白沙河流域山洪预警预报精度,减少山洪灾害在该区域造成的经济损失,本文将分布式时变增益模型、新安江模型、TOPMODEL模型应用于山洪模拟中,选取该流域2009~2013年的实测洪水资料进行模型的率定和验证,比较分析场次洪水在率定期和验证期的模拟结果,探究三种模型在白沙河流域的适用性。结果表明:分布式时变增益模型、新安江模型以及TOPMODEL模型模拟结果的平均洪峰误差分别为16.93%、54.00%、23.20%,径流深误差分别为21.28%、36.69%、12.68%。新安江模型模拟效果不佳,适用性最差;TOPMODEL模型模拟结果比新安江模型模拟结果要好,但洪峰误差依然相对偏大;分布式时变增益模型的模拟效果最好,适用性最强,能够满足洪水预报的基本要求,可用于在该区域进行山洪预警预报。 In order to improve the accuracy of flood forecasting and reduce the economic loss caused by flash flood, the distributed time variant gain (DTVGM) model, Xin’anjiang and TOPMODEL models were applied to the Baishahe basin. Observed data from 2009 to 2013 were selected for calibration and validation of different models. The simulation results in both calibration and validation periods were compared and analyzed, and the applicability of the different models in the Baishahe basin was discussed. The simulation results of the average flood peak errors of the DTVGM model, Xin’anjiang model, TOPMODEL model are 16.93%, 54.00%, 23.20%, and the runoff depth errors are 21.28%, 36.69%, 12.68% in turn. The Xin’anjiang model has poor simulation results and the worst applicability in the basin. The TOPMODEL model has better simulation results than the Xin’anjiang model, but the flood peak error is still relatively large. The DTVGM model has the best simulation effect and the best applicability. It can meet the basic requirements of flood forecasting and could be used for flash flood forecasting in this area.
吴金津,张艳军,陈秀篁,陈宁玥,赵建华,陈斯达. 水文模型在白沙河流域山洪模拟中的适用性研究Flash Flood Simulation in the Baishahe Basin Using Hydrological Models[J]. 水资源研究, 2020, 09(02): 131-139. https://doi.org/10.12677/JWRR.2020.92014
参考文献References
国家防汛抗旱总指挥部. 中国水旱灾害公报[M]. 北京: 中国水利水电出版社, 2007. National Flood Control and Drought Relief Headquarters. Bulletin of flood and drought disasters in china. Beijing: Water Re-sources and Electric Power Press, 2007. (in Chinese)
张平仓, 丁文峰, 王协康. 山洪灾害监测预警关键技术与集成示范研究构想和成果展望[J]. 工程科学与技术, 2018, 50(5): 1-11. ZHANG Pingcang, DING Wenfeng and WANG Xiekang. Research framework and anticipated results of the key technology and integrated demonstrations of mountain torrent disaster monitoring and early warning. Advanced Engineering Sciences, 2018, 50(5): 1-11. (in Chinese)
水利部印发全国山洪灾害防治项目2017-2020年实施方案[J]. 水利信息化, 2017(6): 22. The ministry of water Resources issued the implementation plan of the national flash flood prevention project for 2017-2020. Water Resources Informatization, 2017(6): 22. (in Chinese)
余文君. SWAT模型在黑河山区流域的改进与应用[D]: [硕士学位论文]. 南京: 南京师范大学, 2012. YU Wenjun. Improvement and application of SWAT hydrologic model in mountainous upper Heihe river basin. Nanjing: Nanjing Normal University, 2012. (in Chinese)
穆艾塔尔赛地, 阿不都沙拉木, 丁建丽, 崔春亮. HEC-HMS水文模型在数据稀缺山区流域中的应用——以乌鲁木齐河流域为例[J]. 水土保持通报, 2015, 35(6):140-143 + 148. MUAITAER Saidi, ABUDOU Shalamu, DING Jianli and CUI Chunliang. Application of HEC-HMS in data-insufficient mountainous watersheds: A case study from Urumqi river basin. Bulletin of Soil and Water Conservation, 2015, 35(6): 140-143 + 148. (in Chinese)
孟天翔. 基于Mike Flood的清原县海阳河小流域山洪数值模拟[D]: [硕士学位论文]. 大连: 大连理工大学, 2017. MENG Tianxiang. Flood routing numerical of Haiyang river small watershed in village of Qingyuan based on Mike Flood. Da-lian: Dalian University of Technology, 2017.
高瑞, 穆振侠. 天山西部山区VIC模型的应用[J]. 南水北调与水利科技, 2017, 15(4): 44-48. GAO Rui, MU Zhenxia. Application of VIC model in western Tianshan Mountains. South-to-North Water Transfers and Water Science & Technology, 2017, 15(4): 44-48. (in Chinese)
崔伟财. TOPMODEL模型在白沙河流域洪水预报中的应用研究[J]. 中国水运(下半月), 2019, 19(9): 167-169. CUI Weicai. Application of TOPMODEL model in flood forecasting of Baisha river basin. China Water Transport, 2019, 19(9): 167-169. (in Chinese)
夏军, 叶爱中, 乔云峰, 等. 黄河无定河流域分布式时变增益水文模型的应用研究[J]. 应用基础与工程科学学报, 2007, 15(4): 457-465. XIA Jun, YE Aizhong, QIAO Yunfeng, et al. An applied research on distributed time variant gain model in Wuding river of yellow river. Journal of Basic Science and Engineering, 2007, 15(4): 457-465. (in Chinese)
吴险峰, 刘昌明. 流域水文模型研究的若干进展[J]. 地理科学进展, 2002(4): 341-348. WU Xianfeng, LIU Changming. Progress in watershed hydrological models. Progress in Geography, 2002(4): 341-348. (in Chinese)
徐宗学. 水文模型: 回顾与展望[J]. 北京师范大学学报(自然科学版), 2010, 46(3): 278-289. XU Zongxue. Hydrological models: Past, present and future. Journal of Beijing Normal University (Natural Science), 2010, 46(3): 278-289. (in Chinese)
王婕, 宋晓猛, 张建云, 等. 中小尺度流域洪水模型模拟比较研究[J]. 中国农村水利水电, 2019(7): 72-76. WANG Jie, SONG Xiaomeng, ZHANG Jianyun, et al. Flood simulation of the small and medium-sized river catchment by us-ing multiple hydrological models. China Rural Water and Hydropower, 2019(7): 72-76. (in Chinese)
张汉辰, 李致家, 等. CASC2D模型和新安江模型的应用比较[J]. 水力发电, 2015, 41(8): 23-25 + 61. ZHANG Hanchen, LI Zhijia, et al. Comparative study on the application of CASC2D model and Xin’anjiang model. Water Power, 2015, 41(8): 23-25 + 61. (in Chinese)
李娟芳, 王文川, 车沛沛, 李庆敏. HEC-HMS模型和TOPMODEL模型在东庄流域山洪预报的应用研究[J]. 水电能源科学, 2019, 37(3): 50-53 + 8. LI Juanfang, WANG Wenchuan, CHE Peipei and LI Qingmin. Application research on HEC-HMS model and TOPMODEL model in mountain flood forecasting of Dongzhuang watershed. Water Resources and Power, 2019, 37(3): 50-53 + 8. (in Chi-nese)
王思媛, 孙利敏, 等. HBV模型与新安江模型在黄河源区的应用比较[J]. 水电能源科学, 2016, 34(12): 41-45 + 14. WANG Siyuan, SUN Limin, et al. Comparison of HBV and Xin’anjiang model’s application of source region of Yellow River. Water Resources and Power, 2016, 34(12): 41-45 + 14. (in Chinese)
刘松, 张利平, 佘敦先, 王强, 胡辰, 夏军. 干旱半干旱地区流域水文模型的适用性[J]. 武汉大学学报(工学版), 2019, 52(5): 384-390. LIU Song, ZHANG Liping, SHE Dunxian, WANG Qiang, HU Chen and XIA Jun. Application of catchment hydrologic models in arid and semi-arid regions. Engineering Journal of Wuhan University, 2019, 52(5): 384-390. (in Chinese)
黄艳, 张艳军, 袁正颖, 等. 水文模型在山洪模拟中的比较应用[J]. 水资源研究, 2019(1): 33-43. HUANG Yan, ZHANG Yanjun, YUAN Zhengyin, et al. Comparison and application of hydrological models in mountain flood simulation. Journal of Water Resources Research, 2019(1): 33-43. (in Chinese)
夏军, 叶爱中, 王纲胜. 黄河流域时变增益分布式水文模型(I)——模型的原理与结构[J]. 武汉大学学报(工学版), 2005(6): 10-15. XIA Jun, YE Aizhong and WANG Gangsheng. A distributed time variant gain model applied to Yellow River (I): Model theo-ries and structures. Engineering Journal of Wuhan University, 2005(6): 10-15. (in Chinese)
叶爱中, 夏军, 王纲胜. 黄河流域时变增益分布式水文模型(II)——模型的校检与应用[J]. 武汉大学学报(工学版), 2006(4): 29-32. YE Aizhong, XIA Jun and WANG Gangsheng. A distributed time variant gain model applied to Yellow River (II): Model checking and application. Engineering Journal of Wuhan University, 2006(4): 29-32. (in Chinese)
夏军. 水文非线性系统理论与方法[M]. 武汉: 武汉大学出版社, 2002. XIA Jun. Theory & approaches of hydrological non-linear system. Wuhan: Wuhan University Press, 2002. (in Chi-nese)
XIA, J. A system approach to real-time hydrologic forecast in watersheds. Water International, 2002, 27(1): 87-97. https://doi.org/10.1080/02508060208686981
夏军, 王纲胜, 吕爱锋, 等. 分布式时变增益流域水循环模拟[J]. 地理学报, 2003(5): 789-796. XIA Jun, WANG Gangsheng, LV Aifeng, et al. A research on distributed time variant gain modeling. Acta Geographica Sinica, 2003(5): 789-796. (in Chinese)
赵人俊. 流域水文模拟[M]. 北京: 中国水利水电出版社, 1984. ZHAO Renjun. Catchment hydrologic modeling. Beijing: Water Resources and Electric Power Press, 1984. (in Chinese)
赵人俊, 王佩兰. 新安江模型参数的分析[J]. 水文, 1988(6): 4-11. ZHAO Renjun, WANG Peilan. Analysis of Xin’anjiang model parameters. Journal of China Hydrology, 1988(6): 4-11. (in Chinese)
包为民. 水文预报[M]. 第4版. 北京: 中国水利水电出版社, 2006. BAO Weimin. Hydrological forecast (4th Edition). Beijing: China Water Resources and Hydropower Press, 2006. (in Chi-nese)
熊立华, 郭生练. 分布式流域水文模型[M]. 北京: 中国水利水电出版社, 2004. XIONG Lihua, GUO Shenglian. Distributed watershed hydrological model. Beijing: China Water Resources and Hydropower Press, 2004. (in Chinese)
中华人民共和国水利部. SL2500-2000水文情报预报规范[S]. 北京: 中国水利水电出版社, 2000. The Ministry of Water Resources of the People’s Republic of China. Standard for hydrological information and hydrological forecasting. Beijing: China Water & Power Press, 2000. (in Chinese)
水文站网规划技术导则(SL34-92)[S]. Technical guidelines for hydrological station network planning (SL34-92). (in Chinese)