血管钙化是与骨发育相似的、主动的、高度可调控的复杂病理过程,主要表现为血管壁僵硬度增加和顺应性降低,是心血管疾病高发病率和高死亡率的重要原因。本文详细介绍了血管钙化的分类、病理特点,并对血管钙化的相关机制进行阐述。 Vascular calcification is recognized as an active and highly regulated complex pathological pro-cess that is similar to skeletal bone formation, mainly manifested by increased vascular wall stiffness and decreased compliance. Vascular calcification contributes to high morbidity and mortality of cardiovascular disease. In this paper, the classification and pathological features of vascular calcification are introduced in detail, and the related mechanism of vascular calcifica-tion is expounded.
参考文献References
Leopold, J.A. (2015) Vascular Calcification: Mechanisms of Vascular Smooth Muscle Cell Calcification. Trends in Cardiovascular Medicine, 25, 267-274. https://doi.org/10.1016/j.tcm.2014.10.021
Rennenberg, R.J., Kessels, A.G., Schurgers, L.J., van Engelshoven, J.M., de Leeuw, P.W. and Kroon, A.A. (2009) Vascular Calcifications as a Marker of Increased Cardiovascular Risk: A Meta-Analysis. Vascular Health and Risk Management, 5, 185-197. https://doi.org/10.2147/VHRM.S4822
Durham, A.L., Speer, M.Y., Scatena, M., Giachelli, C.M. andShanahan, C.M. (2018) Role of Smooth Muscle Cells in Vascular Calcification: Implications in Atherosclerosis and Arterial Stiffness. Cardiovascular Research, 114, 590-600. https://doi.org/10.1093/cvr/cvy010
Shekar, C. and Budoff, M. (2018) Calcification of the Heart: Mechanisms and Therapeutic Avenues. Expert Review of Cardiovascular Therapy, 16, 527-536. https://doi.org/10.1080/14779072.2018.1484282
Chesterton, L.J., Sigrist, M.K., Bennett, T., Taal, M.W. and McIntyre, C.W. (2005) Reduced Baroreflex Sensitivity Is Associated with Increased Vascular Calcification and Arterial Stiffness. Nephrology Dialysis Transplantation, 20, 1140-1147. https://doi.org/10.1093/ndt/gfh808
Peres, L.A. and Percio, P.P. (2014) Mineral and Bone Disorder and Vascular Calcification in Patients with Chronic Kidney Disease. Jornal Brasileiro de Nefrologia, 36, 201-207. https://doi.org/10.5935/0101-2800.20140031
Avogaro, A. and Fadini, G.P. (2015) Mechanisms of Ectopic Calcification: Implications for Diabetic Vasculopathy. Cardiovascular Diagnosis and Therapy, 5, 343-352.
Luong, T.T.D., Schelski, N., Boehme, B., Makridakis, M., Vlahou, A., Lang, F., Pieske, B., Alesutan, I. and Voelkl, J. (2018) Fibulin-3 Attenuates Phosphate-Induced Vascular Smooth Muscle Cell Calcification by Inhibition of Oxidative Stress. Cellular Physiology and Biochemistry, 46, 1305-1316. https://doi.org/10.1159/000489144
Sun, Y., Byon, C.H., Yuan, K., Chen, J., Mao, X., Heath, J.M., Javed, A., Zhang, K., Anderson, P.G. and Chen, Y. (2012) Smooth Muscle Cell-Specific Runx2 Deficiency Inhibits Vascular Calcification. Circulation Research, 111, 543-552. https://doi.org/10.1161/CIRCRESAHA.112.267237
Bjorklund, G., Svanberg, E., Dadar, M., Card, D.J., Chirumbolo, S., Harrington, D.J. and Aaseth, J. (2018) The Role of Matrix Gla Protein (MGP) in Vascular Calcification. Current Medicinal Chemistry. https://doi.org/10.2174/0929867325666180716104159
Azpiazu, D., Gonzalo, S., González-Parra, E., Egido, J. and Villa-Bellosta, R. (2018) Role of Pyrophosphate in Vascular Calcification in Chronic Kidney Disease. Nefrología, 38, 250-257. https://doi.org/10.1016/j.nefro.2017.07.005
Rochette, L., Meloux, A., Rigal, E., Zeller, M., Cottin, Y. and Vergely, C. (2018) The Role of Osteoprotegerin in the Crosstalk between Vessels and Bone: Its Potential Utility as a Marker of Cardiometabolic Diseases. Pharmacology & Therapeutics, 182, 115-132. https://doi.org/10.1016/j.pharmthera.2017.08.015
Jahnen-Dechent, W., Heiss, A., Schäfer, C. and Ketteler, M. (2011) Fetuin-A Regulation of Calcified Matrix Metabolism. Circulation Research, 108, 1494-1509. https://doi.org/10.1161/CIRCRESAHA.110.234260
Kapustin, A.N., Davies, J.D., Reynolds, J.L., McNair, R., Jones, G.T., Sidibe, A., Schurgers, L.J., Skepper, J.N., Proudfoot, D., Mayr, M. and Shanahan, C.M. (2011) Calcium Regulates Key Components of Vascular Smooth Muscle Cell-Derived Matrix Vesicles to Enhance Mineralization. Circulation Research, 109, e1-e12. https://doi.org/10.1161/CIRCRESAHA.110.238808
Dai, X.Y., Zhao, M.M., Cai, Y., Guan, Q.C., Zhao, Y., Guan, Y., Kong, W., Zhu, W.G., Xu, M.J. and Wang, X. (2013) Phosphate-Induced Autophagy Counteracts Vascular Calcification by Reducing Matrix Vesicle Release. Kidney International, 83, 1042-1051. https://doi.org/10.1038/ki.2012.482
Liu, D., Cui, W., Liu, B., Hu, H., Liu, J., Xie, R., Yang, X., Gu, G., Zhang, J. and Zheng, H. (2014) Atorvastatin Protects Vascular Smooth Muscle Cells from TGF-β1-Stimulated Calcification by Inducing Autophagy via Suppression of the β-Catenin Pathway. Cellular Physiology and Biochemistry, 33, 129-141. https://doi.org/10.1159/000356656
Jiang, L., Zhang, J., Monticone, R.E., Telljohann, R., Wu, J., Wang, M. and Lakatta, E.G. (2012) Calpain-1 Regulation of Matrix Metalloproteinase 2 Activity in Vascular Smooth Muscle Cells Facilitates Age-Associated Aortic Wall Calcification and Fibrosis. Hypertension, 60, 1192-1199. https://doi.org/10.1161/HYPERTENSIONAHA.112.196840
Nakano-Kurimoto, R., Ikeda, K., Uraoka, M., Nakagawa, Y., Yutaka, K., Koide, M., Takahashi, T., Matoba, S., Yamada, H., Okigaki, M. and Matsubara, H. (2009) Replicative Senescence of Vascular Smooth Muscle Cells Enhances the Calcification through Initiating the Osteoblastic Transition. American Journal of Physiology: Heart and Circulatory Physiology, 297, H1673-H1684. https://doi.org/10.1152/ajpheart.00455.2009
Simionescu, A., Philips, K. and Vyavahare, N. (2005) Elastin-Derived Peptides and TGF-Beta1 Induce Osteogenic Responses in Smooth Muscle Cells. Biochemical and Biophysical Research Communications, 334, 524-532. https://doi.org/10.1016/j.bbrc.2005.06.119