以福建省最大的流域闽江流域为研究对象,基于1951~2012年近60年的日径流量资料和1978~2012近35年的输沙率资料,利用Flashiness Index (FI)和基流指数,借助Mann-Kendall趋势检验方法、GIS技术来识别闽江干流和建溪、大樟溪、富屯溪、沙溪四大支流近60年来径流时空变化特征及其影响因素。研究结果表明,闽江流域近60年来径流特征发生显著的变化,大樟溪、富屯溪、建溪的FI指数显著下降,四个支流、干流的基流指数均呈现出显著上升的趋势。闽江干流、沙溪、富屯溪、大樟溪和建溪的输沙率分别在1984、1993 (2000)、1996 (1998)、1991 (2006)和1997年出现拐点,而FI指数仅在建溪有出现拐点,时间为1968年和1970年。由于闽江流域尺度较大,水电开发持续时间长,闽江流域径流的波动性受水电开发建设的影响并不敏感。大坝建设、水电梯级开发改变了闽江流域的泥沙输出特征。该研究结果可为流域水资源管理提供科学依据。 The Minjiang river basin, the largest river in Fujian Province, was chosen to analyze the characteristics of the runoff variation with Flashiness Index and Baseflow Index for Minjiang four tributaries: Jianxi, Dazhangxi, Futunxi and Shaxi rivers, based on the sixty-year daily streamflow data from 1951 to 2012 and thirty-five-year daily sediment discharge data from 1978 to 2012. Geographical information system and Mann-Kendall test were coupled to characterize the spatiotemporal variation of the runoff and identify its influencing factor. The results show that the stream runoff characteristics in Minjiang river basin were altered significantly in the past 60 years, represented by a decreasing trend for FI in Funtunxi and Jianxi rivers and an increasing trend for baseflow in Minjiang four tributaries. The jumping points of sediment discharge in the four tributaries arise in the year of 1984, 1993 (2000), 1996 (1998), 1991 (2006) and the year 1997. However, the jumping point of FI only arose in the Jianxi River at year 1968 and 1970. The fluctuation of streamflow influenced by hydropower development construction is not sensitive. Dam construction and hydropower cascade development have changed the characteristic of sediment discharge in Minjiang watershed.
FI指数,径流变化,水电开发,输沙率,流域, Flashiness Index
Runoff Variation
Hydropower Development
Land Use Change
Watershed
闽江径流FI指数时空变化分析
赵军1,谢哲宇2,黄金良2*,黄祖亚3
1广西环境保护科学研究院,广西 南宁
2福建省海岸带污染防控重点实验室(厦门大学),福建 厦门
3福建省水文水资源勘测局,福建 福州
收稿日期:2019年12月18日;录用日期:2019年12月31日;发布日期:2020年1月7日
摘 要
以福建省最大的流域闽江流域为研究对象,基于1951~2012年近60年的日径流量资料和1978~2012近35年的输沙率资料,利用Flashiness Index (FI)和基流指数,借助Mann-Kendall趋势检验方法、GIS技术来识别闽江干流和建溪、大樟溪、富屯溪、沙溪四大支流近60年来径流时空变化特征及其影响因素。研究结果表明,闽江流域近60年来径流特征发生显著的变化,大樟溪、富屯溪、建溪的FI指数显著下降,四个支流、干流的基流指数均呈现出显著上升的趋势。闽江干流、沙溪、富屯溪、大樟溪和建溪的输沙率分别在1984、1993 (2000)、1996 (1998)、1991 (2006)和1997年出现拐点,而FI指数仅在建溪有出现拐点,时间为1968年和1970年。由于闽江流域尺度较大,水电开发持续时间长,闽江流域径流的波动性受水电开发建设的影响并不敏感。大坝建设、水电梯级开发改变了闽江流域的泥沙输出特征。该研究结果可为流域水资源管理提供科学依据。
赵 军,谢哲宇,黄金良,黄祖亚. 闽江径流FI指数时空变化分析Spatiotemporal Variability of Flashiness Index in the Minjiang River[J]. 水资源研究, 2020, 09(01): 82-93. https://doi.org/10.12677/JWRR.2020.91009
参考文献References
黄强, 赵雪花, 刘俊萍, 等. 河川径流时间序列分析预测理论与方法[M]. 郑州: 黄河水利出版社, 2008. HUANG Qiang, ZHAO Xuehua, LIU Junping, et al. Time-series analyzing and forecasting stream-flow: Principle and method. Zhengzhou: Yellow River Water Conservancy Press, 2008. (in Chinese)
罗寿泰, 黄祖亚. 闽江流域水资源质量时空变化的系统分析及应用研究[J]. 水利科技, 2015(2): 1-6. LUO Shoutai, HUANG Zuya. Systematic analysis and application research on spatial-temporal variation of water resource quality in Minjiang River basin. Journal of Hydrology, 2015(2): 1-6. (in Chinese)
HOLKO, L., PARAJKA, J., KOSTKA, Z., et al. Flashiness of mountain streams in Slovakia and Austria. Journal of Hydrology, 2011, 405(3-4): 392-401. https://doi.org/10.1016/j.jhydrol.2011.05.038
陆建宇, 王秀庆, 王学斌, 陆宝宏. 径流年内分配不均匀性的度量指标及其应用[J]. 水力发电, 2015, 41(11): 24-28 + 54. LU Jianyu, WANG Xiuqing, WANG Xuebin, et al. Measurement index of nonuniformity of intra-annual runoff distribution and its application. Water Power, 2015, 41(11): 24-28 + 54. (in Chinese)
BLACK, A. R., ROWAN, J. S., BRAGG, O. M., et al. Approaching the physical-biological interface in rivers: A review of methods for ecological evaluation of flow regimes. Progress in Physical Geography, 2005, 29(4): 506-531. https://doi.org/10.1191/0309133305pp460ra
ROBERTSON, D. M., ROERISH, E. D. Influence of various water quality sampling strategies on load estimates for small streams. Water Resources Research, 1999, 35(12): 3747-3759. https://doi.org/10.1029/1999WR900277
WERKHOVEN, K., WAGERNER, T., REED, P., et al. Characterization of watershed model behavior across a hydroclimatic gradient. Water Resources Research, 2008, 44, W01429. https://doi.org/10.1029/2007WR006271
MERZ, R., BLOSCHL, G. A process typology of regional floods. Water Resources Research, 2003, 39(12): 1340-1349. https://doi.org/10.1029/2002WR001952
BAKER, D. B., RICHARDS, R. P., LOFTUS, T. T., et al. A new flashiness index: Characteristics and applications to midwestern rivers and streams. Journal of the American Water Resources Association, 2004, 40(2): 503-522. https://doi.org/10.1111/j.1752-1688.2004.tb01046.x
DEELSTRA, J., IITAL, A. The use of the flashiness index as a possible indicator for nutrient loss prediction in agricultural catchments. Boreal Environment Research, 2008, 13(3): 209-221.
HUANG, J. C., LIN, C. C., CHAN, S. C., et al. Stream discharge characteristics through urbanization gradient in Danshui River, Taiwan: Perspectives from observation and simulation. Environmental Monitoring & Assessment, 2012, 184(9): 5689-5703. https://doi.org/10.1007/s10661-011-2374-2
FONGER, D., MANNING, K. and RATHUN, J. Application of the Richards-Baker flashiness index to Gage Michigan River and stream. DEG Michigan’s Nonpoint Source Program, 2007: 102.
黄金良, 张祯宇, 邵建敏, 等. 九龙江径流Flashiness指数时空变化分析[J]. 水文, 2014, 34(3): 37-42. HUANG Jinliang, ZHANG Zhenyu, SHAO Jianmin, et al. Analysis of spatiotemporal variability of runoff flashiness index for Jiulongjiang River. Journal of China Hydrology, 2014, 34(3): 37-42. (in Chinese)
黄博强. 陆海统筹视角下福建省海岸带土地利用变化过程与环境效应研究[D]. 厦门: 厦门大学, 2019. HUANG Boqiang. Processes in land use change and their environmental consequences in coastal area of Fujian Province from the perspective of land-sea integration. Xiamen: Xiamen University, 2019. (in Chinese)
陈莹, 陈兴伟, 尹义星. 1960-2006年闽江流域径流演变特征[J]. 自然资源学报, 2011, 26(8): 1401-1411. CHEN Ying, CHEN Xingwei and YIN Yixing. Characteristics of runoff changes in the Minjiang River basin from 1960 to 2006. Journal of Natural Resources, 2011, 26(8): 1401-1411. (in Chinese)
徐在民. 概论福建水资源[J]. 水利科技, 2000(2): 1-6. XU Zaimin. Introduction to Fujian water resources. Hydraulic Science and Technology, 2000(2): 1-6. (in Chinese)
程永隆, 沈恒, 许友勤. 闽江梯级电站对水环境的影响[J]. 水资源保护, 2011, 27(5): 114-118. CHENG Yonglong, SHEN Heng and XU Youqin. Preliminary study on effects of Min River cascade hydropower stations on water environment. Water Resources Protection, 2011, 27(5): 114-118. (in Chinese)
FUREY, P. R., GUPTA, V. K. A physically based filter for separating baseflow form streamflow times series. Water Resources Research, 2001, 37(11): 2709-2722. https://doi.org/10.1029/2001WR000243
ZHANG, M. F., WEI, X. H., SUN, P. S., et al. The effect of forest harvesting and climatic variability on runoff in a large watershed: The case study in the upper Minjiang River of Yangtze River basin. Journal of Hydrology, 2012, 25: 1-11. https://doi.org/10.1016/j.jhydrol.2012.05.050
张强, 陈桂亚, 许崇育, 等. 长江流域水沙周期特征及可能影响原因[J]. 水科学进展, 2009, 20(1): 80-85. ZHANG Qiang, CHEN Guiya, XU Congyu, et al. Periodic characters of sediment load and runoff changes in the Yangtze River basin in the past 40 years, China. Advances in Water Science, 2009, 20(1): 80-85. (in Chinese)
刘新有, 何大明. 水电开发对河流水沙特性影响的综合评价方法[J]. 地理学报, 2011, 66(7): 953-960. LIU Xinyou, HE Daming. A comprehensive assessment method of hydropower development impact on runoff and sediment change. Acta Geographica Sinica, 2011, 66(7): 953-960. (in Chinese)