随着锰矿区的开采,越来越多的土壤受到了锰污染,关于锰毒和植物抗锰机制的研究对治理锰污染土壤具有重要的意义。本文综述了高浓度锰对植物不同组织生长发育和生理生化过程的毒害作用,并重点阐述了植物响应高浓度锰的策略:通过植物根系的限制吸收、锰离子的外排、金属螯合作用、细胞内区域化等被动逃避策略和启动抗氧化系统,合成锰的吸收、转运有关的关键蛋白质和基因表达等主动耐受适应策略。最后,本文综合以上研究进展,并提出了一些具有参考价值的展望,通过对植物抗锰机理进行不断深入的研究,以实现利用植物修复技术治理重金属土壤污染,为提高农作物对重金属胁迫的抗性提供了理论基础。 With the mining of manganese ore, more and more soils are contaminated by manganese. There-fore, researches focused on manganese toxicity and the response of plant to high concentration of manganese, playing an important role in controlling manganese-contaminated soil. This paper reviewed the toxic effects of high concentration manganese in plant seedling growth and development, and the response of plants to high manganese stress. The strategies included limited absorption of plants, efflux of manganese, metal chelation, regionalization and antioxidant systems, the proteins and genes involved in absorption and transportation of manganese in plants. Above all, we proposed several advices on the future scope of plants response to high manganese stress, which paved the way for phytoremediation technology to control soil pollution and improving the tolerance of crops to metal stress.
锰胁迫,区域化,螯合,抗氧化系统,锰转运蛋白, Manganese Stress
Regionalization
Metal Chelation
Antioxidant System
Transporter Protein
植物响应高锰胁迫的研究进展
孙珂珂,胡 亚,邓文彬,刘宇称,唐 婷. 植物响应高锰胁迫的研究进展Advances in Research on the Response of Plants to High Manganese Stress[J]. 植物学研究, 2019, 08(06): 445-153. https://doi.org/10.12677/BR.2019.86056
参考文献References
赖燕平, 李明顺, 杨胜香, 陈春强. 广西锰矿恢复区食用农作物重金属污染评价[J]. 应用生态学报, 2007, 18(8): 1801-1806.
Hagelstein, K. (2009) Globally Sustainable Manganese Metal Production and Use. Journal of Environment Manage, 90, 3736-3740. https://doi.org/10.1016/j.jenvman.2008.05.025
Fernando, D.R. and Lynch, J.P. (2015) Manganese Phytotoxicity: New Light on an Old Problem. Annals of Botany, 116, 313-319. https://doi.org/10.1093/aob/mcv111
黄铭洪, 骆永明. 矿区土地修复与生态恢复[J]. 土壤学报, 2003, 40(2): 161-169.
Fageria, N.K. and Stone, L.F. (2008) Micronutrient Deficiency Problems in South America. In: Alloway, B.J., Ed., Micronutrient Deficiencies in Global Crop Production, Springer, Dordrecht, 245-266. https://doi.org/10.1007/978-1-4020-6860-7_10
Zhao, J., Wang, W., Zhou, H., et al. (2017) Manganese Toxicity Inhibited Root Growth by Disrupting Auxin Biosynthesis and Transport in Arabidopsis. Frontiers in Plant Science, 8, 272. https://doi.org/10.3389/fpls.2017.00272
Chen, Z., Sun, L., Liu, P., et al. (2015) Malate Synthesis and Secretion Mediated by a Mn Enhanced Malatede Hydrogenase, SgMDH1, Confers Superior Mn Tolerance in Stylosanthes guianensis. Plant Physiology, 167, 176-188. https://doi.org/10.1104/pp.114.251017
Le Bot, J., Kirby, E.A. and van Beusuchem, M.L. (1990) Manganese Toxicity in Tomato Plants: Effects on Cation Uptake and Distribution. Journal of Plant Nutrition, 13, 513-525. https://doi.org/10.1080/01904169009364096
Fernando, D.R., Marshall, A.T., Forster, P.I., Hoebee, S.E. and Siegele, R. (2013) Multiple Metal Accumulation within a Manganese-Specific Genus. American Journal of Botany, 100, 690-700. https://doi.org/10.3732/ajb.1200545
Baker, A.J.M. (1987) Metal Tolerance. New Phytologist, 106, 93-111. https://doi.org/10.1111/j.1469-8137.1987.tb04685.x
张玉秀, 李林峰, 柴团耀, 等. 锰对植物毒害及植物耐锰机理研究进展[J]. 植物学报, 2010, 45(4): 506-520.
Engler, R.M. and Patrick, W.H. (1975) Stability of Sulfides of Manganese, Iron, Zinc, Copper and Mercury in Flooded and Non Flooded Soils. Soil Science, 119, 217-221. https://doi.org/10.1097/00010694-197503000-00006
Conlin, T.S.S. and Crowder, A.A. (1989) Location of Radial Oxygen Loss and Zones of Potential in Iron Uptake in a Grass and Two Non-Grass Emergent Species. Canadian Journal of Botany, 67, 717-722. https://doi.org/10.1139/b89-095
赵中秋, 崔玉静, 朱永官. 菌根和根分泌物在植物抗重金属中的作用[J]. 生态学杂志, 2003, 22(6): 81-84.
Nogueira, M.A., Magalhaes, G.C. and Cardoso, E.J.B.N. (2004) Manganese Toxicity in Mycorrhizal and Phosphorus-Fertilized Soybean Plants. Journal of Plant Nutrition, 27, 141-156. https://doi.org/10.1081/PLN-120027552
Heenan, D.P. and Campbell, L.C. (1981) Influence of Potassium and Manganese on Growth and Uptake of Magnesium by Soybean (Glycine max (L.) Merr. cv. Bragg). Plant Soil, 61, 447-456. https://doi.org/10.1007/BF02182025
Valérie, P., Laure, W. and Urs, F. (2006) Heavy Metals in White Lupin: Up-Take, Root to Shoot Transfer and Redistribution within the Plant. New Phytologist, 171, 329-341. https://doi.org/10.1111/j.1469-8137.2006.01756.x
徐向华, 施积炎, 陈新才, 等. 锰在商陆叶片的细胞分布及化学形态分析[J]. 农业环境科学学报, 2008, 27(2): 515-520.
王华, 唐树梅, 廖香俊, 等. 超积累植物水蓼吸收锰的生理与分子机制[J]. 云南植物研究, 2008, 30(4): 489-495.
夏龙飞, 宁松瑞, 蔡苗. 酸性土壤植物锰毒与修复措施研究进展[J]. 绿色科技, 2017(12): 26-29+34.
Xu, X.H., Shi, J.Y., Chen, Y.X., et al. (2006) Distribution and Mobility of Manganese in the Hyperaccumulator Plant Phytolacca acinosa Roxb. (Phytolaccaceae). Plant Soil, 285, 323-331. https://doi.org/10.1007/s11104-006-9018-2
Peiter, E., Montanini, B., Gobert, A., et al. (2007) A Secretory Pathway-Localized Cation Diffusion Facilitator Confers Plant Manganese Tolerance. Proceedings of the National Academy of Sciences of the United States of America, 104, 8532-8537. https://doi.org/10.1073/pnas.0609507104
Gandini, C., Schneider, A., Leister, D., Schmidt, S.B. and Husted, S. (2017) The Transporter SynPAM71 Is Located in the Plasma Membrane and Thylakoids, and Mediates Manganese Tolerance in Synechocystis PCC6803. New Phytologist, 215, 256-268. https://doi.org/10.1111/nph.14526
Memon, A.R. and Yatazawa, M. (1984) Nature of Manganese Complexes in Man Ganese Accumulator Plant-Acanthopanax sciadophylloides. Journal of Plant Nutrition, 7, 961- 974. https://doi.org/10.1080/01904168409363257
Bidwell, S.D., Woodrow, I.E., Batianoff, G.N. and Sommer-Knudsen, J. (2002) Hyperaccumulaton of Manganese in the Rainforest Tree Austromyrtus Bidwillii (Myrtaceae) from Queensland, Australia. Functional Plant Biology, 29, 899- 905. https://doi.org/10.1071/PP01192
Chen, Z., Sun, L., Liu, P., et al. (2015) Malate Synthesis and Secretion Mediated by a Manganese-Enhanced Malate Dehydrogenase Confers Superior Manganese Tolerance in Stylosanthes guianensis. Plant Physiology, 167, 176-188. https://doi.org/10.1104/pp.114.251017
Fernando, D., Woodrow, I., Baker, A., Mizuno, T. and Collins, R.N. (2010) Characterization of Foliar Manganese (Mn) in Mn (Hyper) Accumulators Using X-Ray Absorption Spectroscopy. New Phytologist, 188, 1014-1027. https://doi.org/10.1111/j.1469-8137.2010.03431.x
Baldisserotto, C., Ferroni, L., Anfuso, E., et al. (2007) Responses of Trapa natans L. Floating Laminae to High Concentration within the Plant. New Phytologist, 231, 65-82. https://doi.org/10.1007/s00709-007-0242-2
胡朝华, 张蕾, 朱端卫. 植物螯合肽的生物合成与解毒机制及在重金属修复中的应用前景[J]. 华中农业大学学报, 2006, 25(5): 575-580.
Akashi, K., Nishimura, N., Ishida, Y. and Yokota, A. (2004) Potent Hydroxyl Radical-Scavenging Activity of Drought-Induced Type-2 Metallothionein in Wild Watermelon. Biochemical and Biophysical Research Communications, 323, 72-78. https://doi.org/10.1016/j.bbrc.2004.08.056
陈镔, 谭淑端, 董方旭, 等. 重金属对植物的毒害及植物对其毒害的解毒机制[J]. 江苏农业科学, 2019, 47(4): 34-38.
吴惠芳, 龚春风, 刘鹏, 等. 锰胁迫下龙葵和小飞蓬根叶中植物螯合肽和类金属硫蛋白的变化[J]. 环境科学学报, 2010, 30(10): 2058-2064.
薛生国, 黄艳红, 王钧, 等. 采用FTIR法研究酸模叶蓼对锰胁迫生理响应的影响[J]. 中南大学学报(自然科学版), 2011, 42(6): 1528-1532.
周希琴, 莫灿坤. 植物重金属胁迫及其抗氧化系统[J]. 新疆教育学院学报, 2003, 19(2): 103-108.
杨舒贻, 陈晓阳, 惠文凯, 等. 逆境胁迫下植物抗氧化酶系统响应研究进展[J]. 福建农林大学学报(自然科学版), 2016, 45(5): 481-489.
牟东岭, 姚银安, 孙川川, 等. 锰毒对葡萄生理特性的影响[J]. 山地农业生物学报, 2009, 28(4): 302-305.
方淼, 陈虹, 潘存德. 降尘对核桃雌雄花生化特性的影响[J]. 新疆农业科学, 2017, 54(3): 434-441.
苏银萍, 刘华, 于方明, 等. Mn污染对木荷叶片抗氧化酶系统的影响[J]. 农业环境科学学, 2014(4): 680-686.
杜新民. 锌锰配施对小白菜硝酸还原酶和抗氧化酶活性的影响[J]. 农业与技术, 2010, 30(4): 52-56.
Sun, K.L., Wang, H.Y. and Xia, Z.L. (2019) The Maize bHLH Transcription Factor bHLH105 Confers Manganese Tolerance in Transgenic Tobacco. Plant Science, 280, 97-109. https://doi.org/10.1016/j.plantsci.2018.11.006
于方明, 仇荣亮, 周小勇, 等. 镉对超富集植物圆锥南芥氮素代谢的影响研究[J]. 土壤学报, 2008, 45(3): 497-502.
Baker, A.J.M., Brooks, P.R., Pease, A.J. and Malaisse, F. (1983) Studies on Copper and Cobalt Tolerance in Three Closey Related Taxa within the Genus Silence L. (Caryophyllaceae) from Zaire. Plant and Soil, 73, 358-377. https://doi.org/10.1007/BF02184314
迟春宁, 丁国华. 植物耐重金属的分子生物学研究进展[J]. 生物技术通报, 2017, 33(3): 6-11.
申卫红, 黄勤妮, 印莉萍. 酵母、植物的锰营养及转运体[J]. 首都师范大学学报(自然科学版), 2009, 30(5): 40-46.
Sasaki, A., Yamaji, N., Yokosho, K. and Ma, J.F. (2012) Nramp5 Is a Major Transporter Responsible for Manganese and Cadmium Uptake in Rice. Plant Cell, 24, 2155-2167. https://doi.org/10.1105/tpc.112.096925
Ishimaru, Y., Takahashi, R., Bashir, K., Shimo, H., Senoura, T., Sugimoto, K., Ono, K., Yano, M., Ishikawa, S., Arao, T., et al. (2012) Characterizing the Role of Rice NRAMP5 in Manganese, Iron and Cadmium Transport. Scientific Reports, 2, 286. https://doi.org/10.1038/srep00286
Cailliatte, R., Schikora, A., Briat, J.-F., Mari, S. and Curie, C. (2010) High-Affinity Manganese Uptake by the Metal TransporterNRAMP1 Is Essential for Arabidopsis Growth in Low Manganese Conditions. The Plant Cell, 22, 904-917. https://doi.org/10.1105/tpc.109.073023
Huang, C.F., Gao, H.L., Xie, W.X., et al. (2018) NRAMP2, a Trans-Golgi Network-Localized Manganese Transporter, Is Required for Arabidopsis Root Growth under Manganese Deficiency. New Phytologist, 217, 179-193. https://doi.org/10.1111/nph.14783
Makui, H., Roig, E., Cole, S.T., et al. (2000) Identification of the Escherichia Coli K-12Nramp Orthologue (MntH) as a Selective Divalent Metal Ion Transporter. Molecular Microbiology, 35, 1065-1078. https://doi.org/10.1046/j.1365-2958.2000.01774.x
Gustin, J.L., Zanis, M.J. and Salt, D.E. (2011) Structure and Evolution of the Plant Cation Diffusion Facilitator Family of Ion Transporters. BMC Evolutionary Biology, 11, 76. https://doi.org/10.1186/1471-2148-11-76
Li, Q.H., Li, Y., Wu, X.Y., et al. (2017) Metal Transport Protein 8 in Camellia Sinensis Confers Superior Manganese Tolerance When Expressed in Yeast and Arabidopsis thaliana. Scientific Reports, 7, 39915. https://doi.org/10.1038/srep39915
Zhang, M. and Liu, B.X. (2017) Identification of a Rice Metal Tolerance Protein Os MTP11 as a Manganese Transporter. PLoS ONE, 12, e0174987. https://doi.org/10.1371/journal.pone.0174987
Chen, Z., Fujii, Y., Yamaji, N., Masuda, S., Yuma, T., Kamiya, T., Yusuyin, Y., Iwasaki, K., Kato, S., Maeshima, M., et al. (2013) Mn Tolerance in Rice Is Mediated by MTP8.1, a Member of the Cation Diffusion Facilitator Family. Journal of Experiment Botany, 64, 4375-4387. https://doi.org/10.1093/jxb/ert243
Ueno, D., Sasaki, A., Yamaji, N., et al. (2015) A Polarly Localized Transporter for Efficient Manganese Uptake in Rice. Nature Plants, 1, 15170. https://doi.org/10.1038/nplants.2015.170
Yamaji, N., Sasaki, A., Xia, J.X., Yokosho, K. and Ma, J.F. (2013) A Node-Based Switch for Preferential Distribution of Manganese in Rice. Nature Communications, 4, 2442. https://doi.org/10.1038/ncomms3442
曹冠华, 柏旭, 陈迪, 等. ABC转运蛋白结构特点及在植物和真菌重金属耐性中的作用与机制[J]. 农业生物技术学报, 2016, 24(10): 1617-1628.
Song, W.Y., Yamakib, T., Yamajib, N., et al. (2014) A Rice ABC Transporter, Os ABCC1, Reduces Arsenic Accumulation in the Grain. Proceedings of the National Academy of Sciences of the United States of America, 111, 15699-15704. https://doi.org/10.1073/pnas.1414968111
王晓珠, 孙万梅, 马义峰, 等. 拟南芥abc转运蛋白研究进展[J]. 植物生理学报, 2017, 53(2): 133-144.
曹玉巧, 聂庆凯, 高云, 等. 植物中镉及其螯合物相关转运蛋白研究进展[J]. 作物杂志, 2018(3): 15-24.
Yang, M., Zhang, W., Dong, H., et al. (2013) OsNRAMP3 Is a Vascular Bundles-Specific Manganese Transporter That Is Responsible for Manganese Distribution in Rice. PLoS ONE, 8, e83990. https://doi.org/10.1371/journal.pone.0083990
于华, 陈杨, 明珠, 等. 氮素形态对甘蔗锰毒黄化的影响[J]. 西南农业学报, 2018, 31(9): 1821-1824.