目前使用最广泛和成熟的压水堆包壳材料是Zircaloy-2和Zircaloy-4。然而随着核动力反应堆技术朝着提高燃料燃耗和降低燃料循环成本、提高反应堆热效率和提高安全可靠性的方向发展,对关键核心部件燃料元件包壳材料锆合金的性能提出了更高的要求,包壳耐腐蚀性能、吸氢性能、力学性能及辐照尺寸稳定性等。总而言之,包壳材料是核反应堆重要的组成部分,最终包壳材料在核反应堆运行过程中性能的变化情况决定了反应堆的使用寿命及安全可靠性。因此,需要深入研究压水堆堆内行为的演变规律能为更优异综合性能的新锆合金设计、加工工艺优化等提供新的思路。本文综述了近年来国内外对目前压水堆锆合金包壳材料(Zircaloy-2和Zircaloy-4)的研究概况,即基于高温高压下包壳材料在核反应堆中受到冷却剂冲刷(析氢腐蚀和吸氧腐蚀)和辐照蠕变,分析和总结了对包壳材料性能退降的原因。此外,展望了未来研究的方向。 The most widely used and proven pressurized water reactor cladding materials are Zircaloy-2 and Zircaloy-4 until now. With the development of nuclear power reactor technology in the direction of improving fuel consumption and reducing fuel cycle cost, improving reactor thermal efficiency and improving safety and reliability, higher requirements are placed on the performance of zirconium alloys, which are key component fuel element cladding materials, including the properties of corrosion resistance, hydrogen absorption, mechanics and irradiation dimensional stability. In summary, the cladding material is an important component of the nuclear reactor. The perfor-mance of the final cladding material during the operation of the nuclear reactor determines the service life and safety reliability of the reactor. Therefore, it is necessary to study in depth the evolution of the behavior of the PWR reactor to provide new ideas for the design and processing optimization of new zirconium alloys with better comprehensive performance. In this paper, the research progress of the performance degradation of zirconium alloy cladding materials (Zircaloy-2 and Zircaloy-4) in PWR at home and abroad is reviewed. This is based on cladding materials eroded by coolant (hydrogen separation and oxidation) and irradiation creep in nuclear reactor at high temperature and pressure. The reason and mechanism of property degradation of cladding materials are analyzed and summarized. Finally, the future research direction is also forecasted.
潘荣剑,汤爱涛,吴 璐,何 文,王海东,温 榜,伍晓勇. 锆合金包壳材料堆内行为的研究进展 Recent Progress on In-Pile Behavior of Zirconium Alloy Cladding Materials[J]. 材料科学, 2019, 09(09): 861-871. https://doi.org/10.12677/MS.2019.99107
参考文献References
李佩志. 我国锆合金的研究现状[J]. 稀有金属材料与工程, 1993, 22(4): 7-16.
王旭峰, 李中奎, 周军, 等. 锆合金在核工业中的应用及研究进展[J]. 热加工工艺, 2012, 41(2): 71-74.
赵文金, 周邦新, 苗志, 等. 我国高性能锆合金的发展[J]. 原子能科学与技术2005, 39(Sl): 2-9.
吴璐, 邱绍宇, 伍晓勇, 等. 中子辐照对锆合金显微组织的影响研究进展[J]. 重庆大学学报, 2017, 40(4): 24-34.
黄强. 锆合金耐腐蚀性能研究综述[J]. 核动力工程, 1996, 17(3): 262-267.
李中奎, 刘建章, 周廉, 等. 新锆合金耐腐蚀性能研究[J]. 原子能科学技术, 2003, 37(Sl): 84-87.
王辉, 胡石林, 杨启法, 等. 国产新型锆铌合金水侧腐蚀行为研究[J]. 原子能科学技术, 2007, 41(Sl): 342-347.
吴璐, 张伟, 徐春容, 等. 电解渗氢对N18和Zr-4合金板材中氢化物的影响[J]. 材料保护, 2016, 49(Sl): 23-26.
Yamanaka, S., Miyake, M. and Katsura, M. (1997) Study on the Hydrogen Solubility in Zirconium Alloys. Journal of Nuclear Materials, 247, 315-321. https://doi.org/10.1016/S0022-3115(97)00101-3
Wäppling, D., Massih, A.R. and Stahel, P. (1997) A Model for Hydride-Induced Embrittlement in Zirconium-Based Alloys. Journal of Nuclear Materials, 249, 231-238. https://doi.org/10.1016/S0022-3115(97)00183-9
Ackland, G.J. (1998) Embrittlement and Bistable Crystal Structure of Zirconium Hydride. Physical Review Letters, 80, 2233-2236. https://doi.org/10.1103/PhysRevLett.80.2233
Varias, A.G. and Massih, A.R. (2000) Simulation of Hydrogen Embrittlement in Zirconium Alloys under Stress and Temperature Gradients. Journal of Nuclear Materials, 279, 273-285. https://doi.org/10.1016/S0022-3115(99)00286-X
Zhang, Y.F., Bai, X.M., Yu, J.G., et al. (2016) Homogeneous Hydride Formation Path in α-Zr: Molecular Dynamics Simulations with the Charge-Optimized Many-Body Potential. Acta Materialia, 111, 357-365. https://doi.org/10.1016/j.actamat.2016.03.079
Muta, H., Nishikane, R., Ando, Y., et al. (2018) Effect of Hydrogenation Conditions on the Microstructure and Mechanical Properties of Zirconium Hydride. Journal of Nuclear Materials, 500, 145-152. https://doi.org/10.1016/j.jnucmat.2017.12.027
Silva, C.M., Leonard, K.J., Abel, E.V., et al. (2018) Investi-gation of Mechanical and Microstructural Properties of Zircaloy-4 under Different Experimental Conditions. Journal of Nuclear Materials, 499, 546-557. https://doi.org/10.1016/j.jnucmat.2017.12.012
Une, K., Ishimoto, S., Etoh, Y., et al. (2009) The Terminal Solid Solubility of Hydrogen in Irradiated Zircaloy-2 and Microscopic Modeling of Hy-dride Behavior. Journal of Nuclear Materials, 389, 127-136. https://doi.org/10.1016/j.jnucmat.2009.01.017
Zhu, W.H., Wang, R.S., Shu, G.G., Wu, P. and Xiao, H.M. (2010) First-Principles of Study of Different Polymorphs of Crystalline Zirconium Hydride. Journal of Physical Chemistry C, 114, 22361-22368. https://doi.org/10.1021/jp109185n
Wang, F. and Gong, H.R. (2012) Me-chanical and Structural Stability of Zirconium Dihydride. International Journal of Hydrogen Energy, 37, 9688-9695. https://doi.org/10.1016/j.ijhydene.2012.03.078
Lumley, S.C., Grimes, R.W., Murphy, S.T., Burr, P.A., Chroneos, A., Chard-Tuckey, P.R. and Wenman, M.R. (2014) The Thermodynamics of Hydride Precipitation: The Importance of Entropy, Enthalpy and Disorder. Acta Materiialia, 79, 351-362. https://doi.org/10.1016/j.actamat.2014.07.019
Christensen, M., Wolf, W., Freeman, C., Wimmer, E., Adamson, R.B., Hallstadius, L., Cantonwine, P.E. and Mader, E.V. (2015) H in α-Zr and Zirconium Hydrides: Solubility, Effect on Dimensional Changes, and the Role of Defects. Journal of Physics: Condensed Matter, 27, Article ID: 025402. https://doi.org/10.1088/0953-8984/27/2/025402
Bair, J., Zaeem, M.A. and Schwen, D. (2017) Formation Path of δ-Hydrides in Zirconium by Multiphase Field Modeling. Acta Materialia, 123, 235-244. https://doi.org/10.1016/j.actamat.2016.10.056
Sharma, R.K., Tewari, A., Singh, R.N., et al. (2018) Optimum Shape and Orientation of δ-Hydride Precipitate in α-Zirconium Matrix for Different Temperatures. Journal of Alloys and Compounds, 742, 804-813. https://doi.org/10.1016/j.jallcom.2017.12.085
Burr, P.A., Murphy, S.T., Lumley, S.C., et al. (2013) Hydrogen Accommodation in Zr Second Phase Particles: Implications for H Pick-Up and Hydriding of Zircaloy-2 and Zircaloy-4. Corrosion Science, 69, 1-4. https://doi.org/10.1016/j.corsci.2012.11.036
Blackmur, M.S., Robson, J.D., Preuss, M., et al. (2015) Zirco-nium Hydride Precipitation Kinetics in Zircaloy-4 Observed with Synchrotron X-Ray Diffraction. Journal of Nuclear Materials, 464, 160-169. https://doi.org/10.1016/j.jnucmat.2015.04.025
Chu, H.C., Wu, S.K., Chen, K.F., et al. (2007) Effect of Radial Hydrides on the Axial and Hoop Mechanical Properties of Zircaloy-4 Cladding. Journal of Nuclear Materials, 362, 93-103. https://doi.org/10.1016/j.jnucmat.2006.11.008
Kerr, M., Daymond, M.R., Holt, R.A., et al. (2008) Strain Evolution of Zirconium Hydride Embedded in a Zircaloy-2 Matrix. Journal of Nuclear Materials, 380, 70-75. https://doi.org/10.1016/j.jnucmat.2008.07.004
Steuwer, A., Santisteban, J.R., Preuss, M., et al. (2009) Evidence of Stress-Induced Hydrogen Ordering in Zirconium Hydrides. Acta Materialia, 57, 145-152. https://doi.org/10.1016/j.actamat.2008.08.061
Colas, K.B., Motta, A.T., Almer, J.D., et al. (2010) In Situ Study of Hydride Precipitation Kinetics and Re-Orientation in Zircaloy Using Synchrotronradiation. Acta Materialia, 58, 6575-6583. https://doi.org/10.1016/j.actamat.2010.07.018
Qin, W., Kiran Kumar, N.A.P., Szpunar, J.A., et al. (2011) Intergranular δ-Hydride Nucleation and Orientation in Zirconium Alloys. Acta Materialia, 59, 7010-7021. https://doi.org/10.1016/j.actamat.2011.07.054
Hsu, H.-H. and Tsay, L.-W. (2011) Effect of Hydride Orien-tation on Fracture Toughness of Zircaloy-4 Cladding. Journal of Nuclear Materials, 408, 67-72. https://doi.org/10.1016/j.jnucmat.2010.10.068
Grosse, M., van den Berg, M., Goulet, C., et al. (2011) In-Situ Neutron Radiography Investigations of Hydrogen Diffusion and Absorption in Zirconium Alloys. Nuclear Instruments and Methods in Physics Research A, 651, 253-257. https://doi.org/10.1016/j.nima.2010.12.070
Motia, A.T. and Chen, L.O. (2012) Hydride Formation in Zirconium Alloys. Journal of Metals, 64, 1403-1408. https://doi.org/10.1007/s11837-012-0479-x
Couet, A., Motta, A.T. and Comstock, R.J. (2015) Effect of Alloying Elements on Hydrogen pickup in Zirconium. Zirconium in the Nuclear Industry: 17th International Symposium, Hyderabad, 3-7 February 2013, STP 1543, 479. https://doi.org/10.1520/STP154320120215
彭剑超, 李强, 刘仁多, 等. Zr-4合金中氢化物析出长大的透射电镜原位研究[J]. 稀有金属材料与工程, 2011, 40(8): 1377-1381.
Glazoff, M.V., Tokuhiro, A., Rashkeev, S.N., et al. (2014) Oxidation and Hydrogen Uptake in Zirconium, Zircaloy-2 and Zircaloy-4: Computational Thermodynamics and Ab Initio Caculations. Journal of Nuclear Materials, 444, 65-75. https://doi.org/10.1016/j.jnucmat.2013.09.038
Wang, Z., Zhou, B.X., Pan, R.J., et al. (2019) Stress-Driven Grain Re-Orientation and Merging Behaviour Found in Oxidation of Zirconium Alloy Using In-Situ Method and MD Simulation. Corrosion Science, 147, 350-356. https://doi.org/10.1016/j.corsci.2018.11.034
Stojilovic, N., Bender, E.T. and Ramsier, R.D. (2006) Oxidation of Zircaloy-4 by Oxygen and the Production of Water. Journal of Nuclear Materials, 348, 79-86. https://doi.org/10.1016/j.jnucmat.2005.08.022
Yilmazbayhan, A., Breval, E., Motta, A.T., et al. (2006) Transmission Electron Microscopy Examination of Oxide Layers Formed on Zralloys. Journal of Nuclear Materials, 349, 265-281. https://doi.org/10.1016/j.jnucmat.2005.10.012
Qin, W., Nam, C., Li, H.L., et al. (2007) Tetragonal Phase Stability in ZrO2 Film Formed on Zirconium Alloys and Its Effects on Corrosion Resistance. Acta Materialia, 55, 1695-1701. https://doi.org/10.1016/j.actamat.2006.10.030
Ma, X., Toffolon-Masclet, C., Guilbert, T., et al. (2008) Oxidation Kinetics and Oxgen Diffusion in Low-Tin Zircaloy-4 up to 1523 K. Journal of Nuclear Materials, 27, 359-369. https://doi.org/10.1016/j.jnucmat.2008.03.012
Ni, N., Lozano-Perez, S., Jenkins, M.L., et al. (2010) Porosity in Oxides on Zirconium Fuel Cladding Alloys, and Its Importance in Controlling Oxidationrates. Scripta Materialia, 62, 564-567. https://doi.org/10.1016/j.scriptamat.2009.12.043
Tejland, P. and Andrén, H.-O. (2012) Origin and Effect of Lateral Cracks in Oxide Scales Formed on Zirconium Alloys. Journal of Nuclear Materials, 430, 64-71. https://doi.org/10.1016/j.jnucmat.2012.06.039
Mallipudi, V.R., Valance, S. and Bertsch, J. (2012) Meso-Scale Analysis of the Creep Behavior of Hydrogenated Zircaloy-4. Mechanics of Materials, 51, 15-28. https://doi.org/10.1016/j.mechmat.2012.03.003
Dunlop, J.W., Bréchet, Y.J.M., Legras, L., et al. (2007) Dislocation Density-Based Modelling of Plastic Deformation of Zircaloy-4. Materials Science and Engineering A, 443, 77-86. https://doi.org/10.1016/j.msea.2006.08.085
Tulkki, V. and Ikonen, T. (2015) Viscoelastic Modelling of Zircaloy Cladding In-Pile Transient Creep. Journal of Nuclear Materials, 457, 324-329. https://doi.org/10.1016/j.jnucmat.2014.11.100
Moon, J.H., Cantonwine, P.E., Anderson, K.R., et al. (2006) Characterization and Modeling of Creep Mechanisms in Zircaloy-4. Journal of Nuclear Materials, 353, 177-189. https://doi.org/10.1016/j.jnucmat.2006.01.023
Hayes, A., Rosen, R.S. and Kassner, M.E. (2006) Creep Fracture of Zirconium Alloys. Journal of Nuclear of Materials, 353, 109-118. https://doi.org/10.1016/j.jnucmat.2006.02.093
Hayes, T.A. and Eassner, M.E. (2006) Creep of Zirconium and Zirconium Alloys. Metallurgical and Materials Transaction A, 37, 2389-2396. https://doi.org/10.1007/BF02586213
Morrow, B.M., Kozar, R.W., Anderson, K.R., et al. (2013) An Exam-ination of the Use of the Modified Jogged-Screw Model for Predicting Creep Behavior in Zircaloy-4. Acta Materialia, 61, 4452-4460. https://doi.org/10.1016/j.actamat.2013.04.014
Massih, A.R. (2013) High-Temperature Creep and Superplasticity in Zirconium Alloys. Journal of Nuclear Science and Technology, 1, 21-34. https://doi.org/10.1080/00223131.2013.750054
Sarkar, A., Boopathy, K., Eapen, J., et al. (2014) Creep Be-havior of Hydrogenated Zirconium Alloys. Journal of Materials Engineering and Performance, 23, 3649-3656. https://doi.org/10.1007/s11665-014-1129-y
Kozar, R.W., Jaworski, A.W., Webb, T.W., et al. (2014) In Situ Monitored In-Pile Creep Testing of Zirconium Alloys. Journal of Nuclear Materials, 444, 14-22. https://doi.org/10.1016/j.jnucmat.2013.08.043
Kombaiah, B. and LingaMurty, K. (2015) Dislocation Cross-Slip Controlled Creep in Zircaloy-4 at High Stresses. Materials Science & Engineering A, 623, 114-123. https://doi.org/10.1016/j.msea.2014.11.040