光子晶体是一种介质随空间周期性变化的新型材料,其光子禁带可以阻断电磁波的传播,在红外隐身技术的应用中作用广泛。本文分别介绍了光子晶体在热红外隐身、宽频隐身、红外多波段兼容隐身、自适应红外隐身中的作用及其发展历程。并通过分析光子晶体红外隐身应用中的研究现状,对其的发展提出一些建议。 Photonic crystal is a new kind of material with periodic variation of medium with space. Its photonic bandgap can block the propagation of electromagnetic wave and plays a wide role in the application of infrared stealthy technology. In this paper, the role and development of photonic crystals in thermal infrared stealthy, wide band stealthy, infrared multi-band compatible stealthy and adaptive infrared stealthy are introduced. Based on the analysis of the research status of infrared stealthy applications of photonic crystals, some suggestions for its development are put forward.
王 皓,杨忠泽,刘可歆,于鲁辉,万 勇. 光子晶体在红外隐身中的应用及其发展历程Application and Development of Photonic Crystals in Infrared Stealth[J]. 材料科学, 2019, 09(09): 835-848. https://doi.org/10.12677/MS.2019.99104
参考文献References
Yablonovitch, E. (1987) Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physical Review Letters, 58, 2059-2062. https://doi.org/10.1103/PhysRevLett.58.2059
John, S. (1987) Strong Localization of Photons in Certain Disordered Dielectric Superlattices. Physical Review Letters, 58, 2486-2489. https://doi.org/10.1103/PhysRevLett.58.2486
许静, 杜盼盼, 李宇杰. 光子晶体在隐身技术领域的应用研究进展[J]. 激光与红外, 2009, 39(11): 1133-1136.
Dowling, J. and Bowden, C. (1994) Anomalous Index of Refraction in Photonic Bandgap Materials. International Journal of Optics, 41, 345-351. https://doi.org/10.1080/09500349414550371
Djuric, Z., Petrovic, R., Randelovic, D., et al. (1997) One Di-mensional Si-SiO2 Photonic Crystal with Defects Intended for Use in Infrared Spectral Region. International Conference on Microelectronics, Yugoslavia, 14-17 September 1997.
Fink, Y., Winn, J.N., Fan, S., et al. (1998) A Dielectric Omnidirectional Reflector. Science, 282, 1679-1682. https://doi.org/10.1126/science.282.5394.1679
Temelkuran, B., Thomas, E.L., Joannopoulos, J.D., et al. (2001) Low-Loss Infrared Dielectric Material System for Broadband Dual-Range Omnidirectional Reflectivity. Optics Letters, 26, 1370-1372. https://doi.org/10.1364/OL.26.001370
Drupp, R.P., Bossard, J.A., Ye, Y.H., et al. (2004) Dual-Band Infrared Single-Layer Metallodielectric Photonic Crystals. Applied Physics Letters, 85, 1835-1837. https://doi.org/10.1063/1.1786663
Yu, J., Shen, Y., Liu, X., et al. (2004) Absorption in One-Dimensional Metallic-Dielectric Photonic Crystals. Journal of Physics Condensed Matter, 16, L51. https://doi.org/10.1088/0953-8984/16/7/L01
Wang, Z., Jie, Z., Xu, S., et al. (2007) 1D Partially Oxidized Porous Silicon Photonic Crystal Reflector for Mid-Infrared Application. Journal of Physics D Applied Physics, 40, 4482. https://doi.org/10.1088/0022-3727/40/15/016
Liu, B.L., Shi, J.M., Zhao, D.P., et al. (2008) A Kind of Infrared Camouflage Material Based on Photonic Crystals. Infrared Technology, 30, 512-515.
Zhang, W., Xu, G., Zhang, J., et al. (2014) Infrared Spectrally Selective Low Emissivity from Ge/ZnS One-Dimensional Heterostructure Photonic Crystal. Optical Materials, 37, 343-346. https://doi.org/10.1016/j.optmat.2014.06.023
Rowson, S., Chelnokov, A., Cuisin, C., et al. (1999) Two-Dimensional Photonic Bandgap Reflectors for Free-Propagating Beams in the Mid-Infrared. Journal of Optics A: Pure and Applied Optics, 1, 483. https://doi.org/10.1088/1464-4258/1/4/312
Ken, K., Ofer, S., Shandon, H., et al. (2004) Hollow Multilayer Photonic Bandgap Fibers for NIR Applications. Optics Express, 12, 1510-1517. https://doi.org/10.1364/OPEX.12.001510
Yablonovitch, E., Gmitter, T.J., Leung, K.M., et al. (1992) 3-Dimensional Photonic Band Structure. Optical & Quantum Electronics, 24, S273-S283. https://doi.org/10.1007/BF00625828
Lin, S.-Y., Fleming, J., Hetherington, D., et al. (1998) A Three-Dimensional Photonic Crystal Operating at Infrared Wavelengths. Nature, 394, 251. https://doi.org/10.1038/28343
Lin, S.Y., Fleming, J.G., Chow, E., et al. (2000) Enhancement and Suppression of Thermal Emission by a Three-Dimensional Photonic Crystal. Physical Review B, 62, R2243-R2246. https://doi.org/10.1103/PhysRevB.62.R2243
Fleming, J.G., Lin, S.Y., El-Kady, I., et al. (2002) All-Metallic Three-Dimensional Photonic Crystals with a Large Infrared Bandgap. Nature, 417, 52-55. https://doi.org/10.1038/417052a
Lin, S.Y., Moreno, J. and Fleming, J.G. (2003) Three-Dimensional Pho-tonic-Crystal Emitter for Thermal Photovoltaic Power Generation. Applied Physics Letters, 83, 380-382. https://doi.org/10.1063/1.1592614
Enoch, S., Simon, J.J., Escoubas, L., et al. (2005) Simple Layer-by-Layer Photonic Crystal for the Control of Thermal Emission. Applied Physics Letters, 86, 681. https://doi.org/10.1063/1.1954881
Li, Y.-J., Xie, K., Xu, J., et al. (2010) Fabrication of Silicon Inverse Opal Photonic Crystal with a Complete Photonic Band Gap in Mid Infrared Range and Its Optical Properties.
Arpin, K.A., Losego, M.D., Cloud, A.N., et al. (2013) Three-Dimensional Self-Assembled Photonic Crystals with High Tem-perature Stability for Thermal Emission Modification. Nature Communications, 4, 2630. https://doi.org/10.1038/ncomms3630
张连超, 邱丽莉, 芦薇, 等. 蛋白石型光子晶体红外隐身材料的制备[J]. 物理学报, 2017, 66(8): 134-140.
Xin, W., Hu, X., Li, Y., et al. (2002) Enlargement of Omnidirectional Total Reflection Frequency Range in One-Dimensional Photonic Crystals by Using Photonic Heterostructures. Applied Physics Letters, 80, 4291-4293. https://doi.org/10.1063/1.1484547
赵大鹏, 时家明, 汪家春, 等. 中长波红外双波段全向反射镜的设计[J]. 激光与红外, 2008, 38(5): 454-457.
Kong, X., Liu, S., Zhang, H., et al. (2011) Omnidirectional Photonic Band Gap of One-Dimensional Ternary Plasma Photonic Crystals. Journal of Optics, 13, Article ID: 035101. https://doi.org/10.1088/2040-8978/13/3/035101
Jian, G.Z., Xuan, K.Z., Lian, F.W., et al. (2012) Forbidden Band Broadening of Photonic Crystal for Wide Waveband Infrared Stealth. Advanced Materials Research, 571, 170-174. https://doi.org/10.4028/www.scientific.net/AMR.571.170
Hung, H.-C., Wu, C.-J., Yang, T.-J., et al. (2012) Enhancement of Near-Infrared Photonic Band Gap in a Doped Semiconductor Photonic Crystal. Progress in Electromagnetics Research, 125, 219-235. https://doi.org/10.2528/PIER12010311
张继魁, 时家明, 苗雷, 等. 近中红外与1.06μm和1.54μm激光兼容隐身光子晶体研究[J]. 发光学报, 2016, 37(9): 1130-1134.
Amri, R., Sahel, S., Gamra, D., et al. (2018) Photonic Band Gap and Defects Modes in Inorgan-ic/Organic Photonic Crystal Based on Si and HMDSO Layers Deposited by Sputtering and PECVD. Optical Materials, 76, 222-230. https://doi.org/10.1016/j.optmat.2017.12.041
Kang, Y. and Liu, H. (2017) Wideband Absorption in One Dimensional Photonic Crystal with Graphene-Based Hyperbolic Meta-Materials. Superlattices & Microstructures, 114, S0749603617328689. https://doi.org/10.1016/j.spmi.2017.12.046
左翔, 赵选科, 王莲芬, 等. 光子晶体在兼容隐身中的应用概述[J]. 机械制造与自动化, 2014, 43(1): 141-143.
高海潮, 戴松涛. 一种新型红外低目标特征材料[J]. 光谱学与光谱分析, 2007, 27(4): 671-674.
刘必鎏, 时家明, 赵大鹏, 等. 光子晶体隐身应用分析[J]. 激光與紅外, 2009, 39(1): 42-45.
高永芳, 时家明, 赵大鹏. 一维掺杂光子晶体用于远红外与激光兼容隐身分析[J]. 红外技术, 2010, 32(4): 235-238.
Zhao, X., Zhao, Q. and Wang, L. (2011) Laser and Infrared Compatible Stealth from Near to Far Infrared Bands by Doped Photonic Crystal. Procedia Engineering, 15, 1668-1672. https://doi.org/10.1016/j.proeng.2011.08.311
高永芳, 时家明, 赵大鹏, 等. 一种基于光子晶体的中远红外双波段兼容伪装材料[J]. 红外与激光工程, 2012, 41(4): 970-974.
Wang, Q., Wang, J., Zhao, D., et al. (2016) Investigation of Terahertz Waves Propagating through Far Infrared/CO2 Laser Stealth-Compatible Coating Based on One-Dimensional Photonic Crystal. Infrared Physics & Technology, 79, 144-150. https://doi.org/10.1016/j.infrared.2016.10.006
Chao, W., Lei, W., Chen, Z.H., et al. (2016) Production of Flexible Photonic Crystal Films for Compatible Far Infrared and Laser-Band Camouflage by Vacuum Coating Method. Journal of Russian Laser Research, 37, 308-312. https://doi.org/10.1007/s10946-016-9577-5
Lei, M., Shi, J., Wang, J., et al. (2016) Heterogeneous Doped One-Dimensional Photonic Crystal with Low Emissivity in Infrared Atmospheric Window. Optical Engineering, 55, Article ID: 057101. https://doi.org/10.1117/1.OE.55.5.057101
李君哲, 田浩, 刘海韬, 等. 一种基于超材料的雷达红外兼容隐身材料设计与验证[J]. 功能材料, 2017, 48(5): 5137-5143.
Wang, Z., Cheng, Y., Nie, Y., et al. (2014) Design and Realization of One-Dimensional Double Het-ero-Structure Photonic Crystals for Infrared-Radar Stealth-Compatible Materials Applications. Journal of Applied Physics, 116, Article ID: 054905. https://doi.org/10.1063/1.4892088
Zhang, J.K., Shi, J.M., Zhao, D.P., et al. (2017) Realization of Compatible Stealth Material for Infrared, Laser and Radar Based on One-Dimensional Doping-Structure Photonic Crystals. Infrared Physics & Technology, 85, 62-65. https://doi.org/10.1016/j.infrared.2017.05.018
李佩青, 田英, 曹嘉峰, 等. 自适应红外隐身技术研究进展[J]. 传感器与微系统, 2013, 32(10): 5-8, 12.
Larsson, A.-L. and Niklasson, G.A. (2004) Infrared Emittance Modulation of All-Thin-Film Electrochromic Devices. Materials Letters, 58, 2517-2520. https://doi.org/10.1016/j.matlet.2004.03.023
Ashrit, P.V. and Kuai, S.L. (2006) Fabrication of Electrochromically Tunable Photonic Crystals. Proceedings of SPIE, Volume 6322, Article ID: 632202. https://doi.org/10.1117/12.680628
Puzzo, D.P., Arsenault, A.C., Ian, M., et al. (2010) Electroactive Inverse Opal: A Single Material for All Colors. Angewandte Chemie, 48, 943-947. https://doi.org/10.1002/anie.200804391
Long, P., Walkup, W.G., Ordinario, D.D., et al. (2013) Camouflage Coatings: Reconfigurable Infrared Camouflage Coatings from a Cephalopod Protein. Advanced Materials, 25, 5621-5625. https://doi.org/10.1002/adma.201370246
Chernow, V.F., Alaeian, H., Dionne, J.A., et al. (2015) Polymer Lattices as Mechanically Tunable 3-Dimensional Photonic Crystals Operating in the Infrared. Applied Physics Letters, 107, Article ID: 101905. https://doi.org/10.1063/1.4930819