质子交换膜燃料电池作为新型绿色能源技术,在未来电动汽车及分散式电站等领域将有非常广阔的应用前景。但目前制约燃料电池商业化的主要瓶颈是其高成本和低寿命,而贵金属氧还原催化剂的使用是成本的主要来源,也是决定燃料电池性能的关键因素。本文综述了一种新型的氧还原催化剂——铂基金属间化合物,介绍其结构特性以及过渡金属组成对氧还原催化反应活性和稳定性的影响,最后对铂基催化剂的发展给出了展望。 Proton exchange membrane fuel cells (PEMFCs), as a new type of environmentally friendly tech-nology, will have widespread applications in the field of automobiles, distributed power stations and so on. However, high cost and low stability are the main issues, which block the further com-mercialization of PEMFCs. The high cost originates from the usage of Pt noble metal as oxygen re-duction reaction (ORR) catalysts, which is the crucial factor on the performance of fuel cell. Herein, we review a novel kind of ORR catalysts, intermetallic compounds. The specific structural proper-ties and the effect of transition metals composition on the catalytic activity and stability are in-troduced. Finally, the perspective on the development of Pt-based intermetallic catalysts and their application in PEMFCs are provided.
孙 华,戚 頔,刘 辉,邵雷军,王晓霞. Pt基有序金属间化合物氧还原催化剂研究进展Recent Advances in Pt-Based Ordered Intermetallic Catalysts for Oxygen Reduction Reaction[J]. 材料科学, 2019, 09(05): 479-488. https://doi.org/10.12677/MS.2019.95061
参考文献References
章俊良, 蒋峰景. 燃料电池——原理关键材料和技术[M]. 上海: 上海交通大学出版社, 2014: 1-5.
TOYOTA, Fuel Cell Vehicles. http://www.toyota.co.jp/jpn/tech/environment/fcv/index.html
Nie, Y., Li, L. and Wei, Z. (2015) Recent Advancements in Pt and Pt-Free Catalysts for Oxygen Reduction Reaction. Chemical Society Reviews, 44, 2168-2201. https://doi.org/10.1039/C4CS00484A
Shao, M., Chang, Q., Dodelet, J.-P. and Chenitz, R. (2016) Recent Advances in Electrocatalysts for Oxygen Reduction Reaction. Chemical Reviews, 116, 3594-3657. https://doi.org/10.1021/acs.chemrev.5b00462
Strasser, P. and Kühl, S. (2016) Dealloyed Pt-Based Core-Shell Oxygen Reduction Electrocatalysts. Nano Energy, 29, 166-177. https://doi.org/10.1016/j.nanoen.2016.04.047
Nørskov, J.K., Rossmeisl, J., Logadottir, A., Lindqvist, L., Kitchin, J.R., Bligaard, T. and Jónsson, H. (2004) Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. The Journal of Physical Chemistry B, 108, 17886-17892. https://doi.org/10.1021/jp047349j
Strasser, P., Koh, S., Anniyev, T., Greeley, J., More, K., Yu, C., Liu, Z., Kaya, S., Nordlund, D., Ogasawara, H., Toney, M.F. and Nilsson, A. (2010) Lattice-Strain Control of the Activity in Dealloyed Core-Shell Fuel Cell Catalysts. Nature Chemistry, 2, 454-460. https://doi.org/10.1038/nchem.623
Furukawa, S. and Komatsu, T. (2016) Intermetallic Compounds: Promising Inorganic Materials for Well-Structured and Electronically Modified Reaction Environments for Efficient Catalysis. ACS Catalysis, 7, 735-765. https://doi.org/10.1021/acscatal.6b02603
Luo, M., Sun, Y., Wang, L. and Guo, S. (2017) Tuning Multimetallic Ordered Intermetallic Nanocrystals for Efficient Energy Electrocatalysis. Advanced Energy Materials, 7, Article ID: 1602073. https://doi.org/10.1002/aenm.201602073
Frommen,C. and Rösner, H. (2004) Observation of Long-Period Superstructures in Chemically Synthesised CoPt Nanoparticles. Materials Letters, 58, 123-127. https://doi.org/10.1016/S0167-577X(03)00428-2
Casado-Rivera, E., Volpe, D.J., Alden, L., Lind, C., Downie, C., Vázquez-Alvarez, T., Angelo, A.C., Disalvo, F.J. and Abruña, H.D. (2004) Electrocatalytic Activity of Ordered Intermetallic Phases for Fuel Cell Applications. Journal of the American Chemical Society, 126, 4043-4049. https://doi.org/10.1021/ja038497a
Sun, S., Murray, C.B., Weller, D., Folks, L. and Moser, A. (2000) Mono-disperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices. Science, 287, 1989-1992. https://doi.org/10.1126/science.287.5460.1989
Kim, J., Lee, Y. and Sun, S. (2010) Structurally Ordered FePt Nanoparticles and Their Enhanced Catalysis for Oxygen Reduction Reaction. Journal of the American Chemical Society, 132, 4996-4997. https://doi.org/10.1021/ja1009629
Li, X., An, L., Wang, X., Li, F., Zou, R. and Xia, D. (2012) Supported Sub-5nm Pt-Fe Intermetallic Compounds for Electrocatalytic Application. Journal of Materials Chemistry, 22, 6047-6052. https://doi.org/10.1039/c2jm16504j
Li, Q., Wu, L., Wu, G., Su, D., Lv, H., Zhang, S., Zhu, W., Casimir, A., Zhu, H., Mendoza-Garcia, A. and Sun, S. (2015) New Approach to Fully Ordered fct-FePt Nanoparticles for Much Enhanced Electrocatalysis in Acid. Nano Letters, 15, 2468-2473. https://doi.org/10.1021/acs.nanolett.5b00320
Du, X.-X., He, Y., Wang, X.-X. and Wang, J.-N. (2016) Fi-ne-Grained and Fully Ordered Intermetallic PtFe Catalyst with Largely Enhanced Catalytic Activity and Durability. Energy & Environmental Science, 9, 2623-2632. https://doi.org/10.1039/C6EE01204C
Chung, D.-Y., Jun, S.-W., Yoon, G., Kwon, S.-G., Shin, D.Y., Seo, P., Yoo, J.-M., Shin, H., Chung, Y.-H., Kim, H., Mun, B.-S., Lee, K.-S., Lee, N.-S., Yoo, S.-J., Lim, D.-H., Kang, K., Sung, Y.-E. and Hyeon, T. (2015) Highly Durable and Active PtFe Nanocatalyst for Electrochemical Oxygen Reduction Reaction. Journal of the American Chemical Society, 137, 15478-15485. https://doi.org/10.1021/jacs.5b09653
Jung, C., Lee, C., Bang, K., Lim, J., Lee, H., Ryu, H.-J., Cho, E. and Lee, H.-M. (2017) Synthesis of Chemically Ordered Pt3Fe/C Intermetallic Electrocatalysts for Oxygen Reduction Reaction with Enhanced Activity and Durability via a Removable Carbon Coating. ACS Applied Materials & Interfaces, 9, 31806-31815. https://doi.org/10.1021/acsami.7b07648
蔡业政, 骆明川, 王芳辉, 孙照楠, 朱红. 合成具有高氧还原反应催化活性的结构有序铂铁合金催化剂[J]. 电化学, 2016, 22(2): 185-191.
Lebedeva, M.V., Pierron-Bohnes, V., Goyhenex, C., Papaefthimiou, V., Zafeiratos, S., Nazmutdinov, R.R., Da Costa, V., Acosta, M., Zosiak, L., Kozubski, R., Muller, D. and Savinova, E.R. (2013) Effect of the Chemical Order on the Electrocatalytic Activity of Model PtCo Electrodes in the Oxygen Reduction Reaction. Electrochimica Acta, 108, 605-616. https://doi.org/10.1016/j.electacta.2013.07.038
Xiong, Y., Xiao, L., Yang, Y., DiSalvo, F.J., Abruña, H.D. (2018) High-Loading Intermetallic Pt3Co/C Core-Shell Nanoparticles as Enhanced Activity Electrocatalysts toward the Oxygen Reduction Reaction (ORR). Chemistry of Materials, 30, 1532-1539. https://doi.org/10.1021/acs.chemmater.7b04201
Wang, D., Xin, H.-L., Hovden, R., Wang, H., Yu, Y., Muller, D.A., DiSalvo, F.J. and Abruña, H.D. (2013) Structurally Ordered Intermetallic Platinum-Cobalt Core-Shell Na-noparticles with Enhanced Activity and Stability as Oxygen Reduction Electrocatalysts. Nature Materials, 12, 81-87. https://doi.org/10.1038/nmat3458
Cai, Y., Gao, P., Wang, F. and Zhu, H. (2017) Carbon Supported Chemi-cally Ordered Nanoparicles with Stable Pt Shell and Their Superior Catalysis toward the Oxygen Reduction Reaction. Electrochimica Acta, 245, 924-933. https://doi.org/10.1016/j.electacta.2017.04.173
Jia, Q., Caldwell, K., Ramaker, D.E., Ziegelbauer, J.M., Liu, Z., Yu, Z., Trahan, M. and Mukerjee, S. (2014) In Situ Spectroscopic Evidence for Ordered Core–Ultrathin Shell Pt1Co1 Nanoparticles with Enhanced Activity and Stability as Oxygen Reduction Electrocatalysts. Journal of Physical Chemistry C, 118, 20496-20503. https://doi.org/10.1021/jp507204k
Li, J., Sharma, S., Liu, X., Pan, Y.-T., Spendelow, J.S., Chi, M., Jia, Y., Zhang, P., Cullen, D.A., Xi, Z., Lin, H., Yin, Z., Shen, B., Muzzio, M., Yu, C., Kim, Y.S., Peterson, A.A., More, K.L., Zhu, H. and Sun, S. (2019) Hard-Magnet L10-CoPt Nanoparticles Advance Fuel Cell Catalysis. Joule, 3, 124-135. https://doi.org/10.1016/j.joule.2018.09.016
Hoshi, N., Nakamura, M. and Hitotsuyanagi, A. (2013) Active Sites for the Oxygen Reduction Reaction on the High Index Planes of Pt. Electrochimica Acta, 112, 899-904. https://doi.org/10.1016/j.electacta.2013.05.045
Bu, L., Guo, S., Zhang, X., Shen, X., Su, D., Lu, G., Zhu, X., Yao, J., Guo, J. and Huang, X. (2016) Surface Engineering of Hierarchical Platinum-Cobalt Nanowires for Efficient Electrocatalysis. Nature Communications, 7, Article No. 11850. https://doi.org/10.1038/ncomms11850
Yarlagadda, V., Carpenter, M.K., Moylan, T.E., Kukreja, R.S., Koestner, R., Gu, W., Thompson, L. and Kongkanand, A. (2018) Boosting Fuel Cell Performance with Accessible Carbon Mesopores. ACS Energy Letters, 3, 618-621. https://doi.org/10.1021/acsenergylett.8b00186
Guan, B.-Y., Yu, X.-Y., Wu, H.-B. and Lou, X.-W. (2017) Complex Nanostructures from Materials Based on Metal-Organic Frameworks for Electrochemical Energy Storage and Conversion. Advanced Materials, 29, Article ID: 1703614. https://doi.org/10.1002/adma.201703614
Wang, X.-X., Hwang, S., Pan, Y.-T., Chen, K., He, Y., Karakalos, S., Zhang, H., Spendelow, J.S., Su, D. and Wu, G. (2018) Ordered Pt3Co Intermetallic Nanoparticles Derived from Metal-Organic Frameworks for Oxygen Reduction. Nano Letters, 18, 4163-4171. https://doi.org/10.1021/acs.nanolett.8b00978
Chong, L., Wen, J., Kubal, J., Sen, F.G., Zou, J., Greeley, J., Chan, M., Barkholtz, H., Ding, W. and Liu, D.-J. (2018) Ultralow-Loading Platinum-Cobalt Fuel Cell Catalysts Derived from Imidazolate Frameworks. Science, 362, 1276-1281. https://doi.org/10.1126/science.aau0630
Wang, D., Yu, Y., Xin, H.L., Hovden, R., Ercius, P., Mundy, J.A., Chen, H., Richard, J.H., Muller, D.A. and Disalvo, F.J. (2012) Tuning Oxygen Reduction Reaction Activity via Con-trollable Dealloying: A Model Study of Ordered Cu3Pt/C Intermetallic Nanocatalysts. Nano Letters, 12, 5230-5238. https://doi.org/10.1021/nl302404g
Wang, D., Yu, Y., Zhu, J., Liu, S., Muller, D.A. and Abruña, H.D. (2015) Morphology and Activity Tuning of Cu3Pt/C Ordered Intermetallic Nanoparticles by Selective Electrochemical Deal-loying. Nano Letters, 15, 1343-1348. https://doi.org/10.1021/nl504597j
Hodnik, N., Jeyabharathi, C., Meier, J.C., Kostka, A., Phani, K.L., Recnik, A., Bele, M., Hocevar, S., Gaberscek, M. and Mayrhofer, K.J.J. (2014) Effect of Ordering of PtCu3 Nanoparticle Structure on the Activity and Stability for the Oxygen Reduction Reaction. Physical Chemistry Chemical Physics, 16, 13610-13615. https://doi.org/10.1039/C4CP00585F
Bu, L., Zhang, N., Guo, S., Zhang, X., Li, J., Yao, J., Wu, T., Lu, G., Ma, J.-Y., Su, D. and Huang, X. (2016) Biaxially Strained PtPb/Pt Core/Shell Nanoplate Boosts Oxygen Reduction Catalysis. Science, 354, 1410-1414. https://doi.org/10.1126/science.aah6133
Bu, L., Shao, Q., B, E., Guo, J., Yao, J., Huang, X. (2017) PtPb/PtNi Intermetallic Core/Atomic Layer Shell Octahedra for Efficient Oxygen Reduction Electrocatalysis. Journal of the American Chemical Society, 139, 9576-9582. https://doi.org/10.1021/jacs.7b03510
Zhang, S., Guo, S., Zhu, H., Su, D. and Sun, S. (2012) Struc-ture-Induced Enhancement in Electrooxidation of Trimetallic FePtAu Nanoparticles. Journal of American Chemistry Society, 134, 5060-5063. https://doi.org/10.1021/ja300708j
Zhu, H., Cai, Y., Wang, F., Gao, P. and Cao, J. (2018) Scalable Preparation of the Chemically Ordered Pt-Fe-Au Nanocatalysts with High Catalytic Reactivity and Stability for Oxygen Reduction Reactions, ACS Applied Materials & Interfaces, 10, 22156-22166. https://doi.org/10.1021/acsami.8b05114
Sasaki, K., Naohara, H., Choi, Y., Cai, Y., Chen, W.-F., Liu, P. and Adzic, R.R. (2012) Highly Stable Pt Monolayer on PdAu Nanoparticle Electrocatalysts for the Oxygen Reduction Re-action. Nature Communications, 3, Article No. 1115. https://doi.org/10.1038/ncomms2124
Arumugam, B., Tamaki, T. and Yamaguchi, T. (2015) Beneficial Role of Copper in the Enhancement of Durability of Ordered Intermetallic PtFeCu Catalyst for Electrocatalytic Oxygen Reduction. ACS Applied Materials & Interfaces, 7, 16311-16321. https://doi.org/10.1021/acsami.5b03137
Kuroki, H., Tamaki, T., Matsumoto, M., Arao, M., Kubobuchi, K., Imai, H. and Yamaguchi, T. (2016) Platinum-Iron-Nickel Trimetallic Catalyst with Superlattice Structure for Enhanced Oxygen Reduction Activity and Durability. Industrial & Engineering Chemistry Research, 55, 11458-11466. https://doi.org/10.1021/acs.iecr.6b02298
Tamaki, T., Minagawa, A., Arumugam, B., Kakade, B.A. and Yamaguchi, T. (2014) Highly Active and Durable Chemically Ordered Pt-Fe-Co Intermetallics as Cathode Catalysts of Membrane-Electrode Assemblies in Polymer Electrolyte Fuel Cells. Journal of Power Sources, 271, 346-353. https://doi.org/10.1016/j.jpowsour.2014.08.005
Arumugam, B., Kakade, B., Tamaki, T., Arao, M., Imai, H. and Yamaguchi, T. (2014) Enhanced Activity and Durability for the Electroreduction of Oxygen at a Chemically Ordered Intermetallic PtFeCo Catalyst. RSC Advances, 4, 27510-27517. https://doi.org/10.1039/C4RA04744C