石墨烯(Graphene)是一种具有优异的电学、热学、力学等物理化学性能的二维碳纳米材料。其应用涵盖电池、传感器、超级电容器和复合材料等领域。但石墨烯片层之间具有很强的π-π相互作用以及高比表面能导致其具有很强的化学惰性,易趋于聚集,限制其优异的性能的发挥。因此石墨烯必须经过适当的改性以促进其在溶剂或基体树脂的分散,进一步拓展石墨烯的应用范围。石墨烯表面改性方式一般分为化学改性(共价键改性)、物理改性(非共价键改性)以及元素掺杂改性。本文从这三种改性方式综述了石墨烯的表面处理方法目前取得的进展,并展望了石墨烯改性未来的发展。 Graphene is a kind of two-dimensional carbon nanomaterial with excellent physical and chemical properties. The applications of graphene covered batteries, sensors, supercapacitors and compo-sites. However, the strong π-π interaction between the graphene sheets and the high specific surface energy limit its excellent performance, because of the strong chemical inertness and aggregate. Therefore, graphene must be appropriately modified to promote its dispersion in a solvent or matrix resin, expanding the application. The surface modification methods of graphene are generally classified into chemical modification (covalent bond modification), physical modification (non-covalent bond modification), and element doping modification. In this paper, the preparation methods of graphene are reviewed from these three modification methods, and it prospected the future development.
李靖宇,金正宇,赵海超. 石墨烯表面改性研究进展Research Progress on Surface Modification of Graphene[J]. 材料科学, 2019, 09(04): 379-391. https://doi.org/10.12677/MS.2019.94050
参考文献References
Stankovich, S., Piner, R.D., Nguyen, S.T., et al. (2006) Synthesis and Exfoliation of Isocyanate-Treated Graphene Oxide Nanoplatelets. Carbon, 44, 3342-3347. https://doi.org/10.1016/j.carbon.2006.06.004
Xu, Z., Zhang, J., Shan, M., et al. (2014) Organosilane-Functionalized Graphene Oxide for Enhanced Antifouling and Mechanical Properties of Polyvinylidene Fluoride Ultrafiltration Membranes. Journal of Membrane Science, 458, 1-13. https://doi.org/10.1016/j.memsci.2014.01.050
Bourlinos, A.B., Gournis, D. and Petridis, D. (2003) Graphite Oxide: Chemical Reduction to Graphite and Surface Modification with Primary Aliphatic Amines and Amino Acids. Langmuir, 19, 6050-6055. https://doi.org/10.1021/la026525h
Rani, S., Kumar, M., Kumar, R., et al. (2014) Characterization and Dis-persibility of Improved Thermally Stable Amide Functionalized Graphene Oxide. Materials Research Bulletin, 60, 143-149. https://doi.org/10.1016/j.materresbull.2014.07.019
Xu, C., Wang, X., Wang, J., et al. (2010) Synthesis and Photoelectrical Properties of β-Cyclodextrin Functionalized Graphene Materials with High Bio-Recognition Capability. Chemical Physics Letters, 498, 162-167. https://doi.org/10.1016/j.cplett.2010.08.060
Zhao, K., Wang, Y., Wang, W., et al. (2018) Moisture Absorption, Perspiration and Thermal Conductive Polyester Fabric Prepared by Thiol-Ene Click Chemistry with Reduced Graphene Oxide Finishing Agent. Journal of Materials Science, 53, 14262-14273. https://doi.org/10.1007/s10853-018-2671-z
Salvio, R., Krabbenborg, S., Naber, W.J.M., et al. (2009) The Formation of Large-Area Conducting Graphene-Like Platelets. Chemistry: A European Journal, 15, 8235-8240. https://doi.org/10.1002/chem.200900661
Avinash, M.B., Subrahmanyam, K.S., Sundarayya, Y., et al. (2010) Covalent Modification and Exfoliation of Graphene Oxide Using Ferrocene. Nanoscale, 2, 1762-1766. https://doi.org/10.1039/c0nr00024h
Ji, Z., Chen, J., Huang, L., et al. (2015) High-Yield Production of Highly Conductive Graphene via Reversible Covalent Chemistry. Chemical Communications, 51, 2806-2809. https://doi.org/10.1039/C4CC09144B
Yuan, C., Chen, W. and Yan, L. (2012) Amino-Grafted Graphene as a Stable and Metal-Free Solid Basic Catalyst. Journal of Materials Chemistry, 22, 7456-7460. https://doi.org/10.1039/c2jm30442b
Kan, L., Xu, Z. and Gao, C. (2011) General Avenue to Individually Dis-persed Graphene Oxide-Based Two-Dimensional Molecular Brushes by Free Radical Polymerization. Macromolecules, 44, 444-452. https://doi.org/10.1021/ma102371d
Lee, S.H., Dreyer, D.R., An, J., et al. (2010) Polymer Brushes via Controlled Surface Initiated Atom Transfer Radical Polymerization (ATRP) from Graphene Oxide. Mac-romolecular Rapid Communications, 31, 281-288. https://doi.org/10.1002/marc.200900641
Zhang, B., Chen, Y., Xu, L., et al. (2011) Growing Poly(N-vinylcarbazole) from the Surface of Graphene Oxide via RAFT Polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 49, 2043-2050. https://doi.org/10.1002/pola.24633
Zhang, Q., Li, Q., Xiang, S., et al. (2014) Covalent Modification of Gra-phene Oxide with Polynorbornene by Surface-Initiated Ring-Opening Metathesis Polymerization, Polymer, 55, 6044-6050. https://doi.org/10.1016/j.polymer.2014.09.049
Kou, L., He, H. and Gao, C. (2010) Click Chemistry Approach to Functionalize Two-Dimensional Macromolecules of Graphene Oxide Nanosheets. Nano-Micro Letters, 2, 177-183. https://doi.org/10.1007/BF03353638
Thomas, H.R., Phillips, D.J., Wilson, N.R., et al. (2015) One-Step Grafting of Polymers to Graphene Oxide. Polymer Chemistry, 6, 8270-82745. https://doi.org/10.1039/C5PY01358E
Xu, Z., Wang, S., Li, Y., et al. (2014) Covalent Functionalization of Graphene Oxide with Biocompatible Poly(ethylene glycol) for Delivery of Paclitaxel. ACS Applied Materials& Interfaces, 6, 17268-17276. https://doi.org/10.1021/am505308f
Yuan, J., Chen, G., Weng, W., et al. (2012) One-Step Functionalization of Graphene with Cyclopentadienyl-Capped Macromolecules via Diels-Alder “Click” Chemistry. Journal of Materials Chemistry, 22, 7929-7936. https://doi.org/10.1039/c2jm16433g
Mengnan, R., Yang, D., Wenli, G., et al. (2018) Mussel-Inspired Synthesis of Barium Titanate@poly(dopamine)@graphene Oxide Multilayer Core-Shell Hybrids for High-Performance Dielectric Elastomer Actuator, Materials Letters, 219, 109-113. https://doi.org/10.1016/j.matlet.2018.02.038
Hao, R., Qian, W., Zhang, L., et al. (2008) Aqueous Dispersions of TCNQ-Anion-Stabilized Graphene Sheets. Chemical Communications, 48, 6576-6578. https://doi.org/10.1039/b816971c
Xu, Y., Bai, H., Lu, G., et al. (2008) Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets. Journal of the American Chemical Society, 130, 5856-5857. https://doi.org/10.1021/ja800745y
Bai, H., Xu, Y., Zhao, L., et al. (2009) Non-Covalent Functionalization of Graphene Sheets by Sulfonated Polyaniline. Chemical Communications, 13, 1667-1669. https://doi.org/10.1039/b821805f
Chen, C., Qiu, S., Cui, M., et al. (2017) Achieving High Performance Corrosion and Wear Resistant Epoxy Coatings via Incorporation of Noncovalent Functionalized Grapheme. Carbon, 114, 356-366. https://doi.org/10.1016/j.carbon.2016.12.044
Qiu, S., Li, W., Zheng, W., et al. (2017) Synergistic Effect of Polypyrrole-Intercalated Graphene for Enhanced Corrosion Protection of Aqueous Coating in 3.5% NaCl Solution. ACS Applied Materials & Interfaces, 9, 34294-34304. https://doi.org/10.1021/acsami.7b08325
Wang, X., Fulvio, P.F., Baker, G.A., et al. (2010) Direct Exfoliation of Natural Graphite into Micrometre Size Few Layers Graphene Sheets Using Ionic Liquids. Chemical Communications, 46, 4487-4489. https://doi.org/10.1039/c0cc00799d
Acik, M., Dreyer, D.R., Bielawski, C.W., et al. (2012) Impact of Ionic Liquids on the Exfoliation of Graphite Oxide. Journal of Physical Chemistry C, 116, 7867-7873. https://doi.org/10.1021/jp300772m
Lu, J., Yang, J., Wang, J., et al. (2009) One-Pot Synthesis of Fluorescent Carbon Nanoribbons, Nanoparticles, and Graphene by the Exfoliation of Graphite in Ionic Liquids. ACS Nano, 3, 2367-2375. https://doi.org/10.1021/nn900546b
Yu, Y., Han, Z., Zhang, Y., et al. (2016) Synthesis of High-Quality Graphene Sheets in Task-Specific Ionic Liquids and Their Photocatalytic Performance. New Journal of Chemistry, 40, 3147-3154. https://doi.org/10.1039/C5NJ03112E
杨晓宁. SDS表面活性剂在纳米尺度多层石墨烯的吸附自组装分子模拟[J]. 化工学报, 2015, 66(7): 2709-2717.
Smith, R.J., Lotya, M. and Coleman, J.N. (2010) The Importance of Repulsive Potential Barriers for the Dispersion of Graphene Using Surfactants. New Journal of Physics, 12, 135-141. https://doi.org/10.1088/1367-2630/12/12/125008
Guardia, L., Fernándea-Merino, M.J., Paredes, J.I., et al. (2011) High-Throughput Production of Pristine Graphene in an Aqueous Dispersion Assisted by Non-Ionic Surfactants. Carbon, 49, 1653-1662. https://doi.org/10.1016/j.carbon.2010.12.049
Chang, C.K., Kataria, S., Kuo, C.C., et al. (2013) Band Gap Engineering of Chemical Vapor Deposited Graphene by in Situ BN Doping. ACS Nano, 7, 1333-1341. https://doi.org/10.1021/nn3049158
Wu, T.R., Shen, H.L., Cheng, B., et al. (2012) Nitrogen and Boron Doped Monolayer Graphene by Chemical Vapor Deposition Using Polystyrene, Urea and Boric Acid. New Journal of Chemistry, 36, 1385-1391. https://doi.org/10.1039/c2nj40068e
Kwon, Q.S., Park, S.J., Hong, J.Y., et al. (2012) Flexible FET-Type VEGF Aptasensor Based on Nitrogen-Doped Graphene Converted from Conducting Polymer. ACS Nano, 6, 1486-1493. https://doi.org/10.1021/nn204395n
Gao, H., Liu, Z., Song, L., et al. (2012) Synthesis of S-Doped Graphene by Liquid Precursor. Nanotechnology, 23, Article ID: 275605. https://doi.org/10.1088/0957-4484/23/27/275605
Jeong, H.M., Lee, J.W., Shin, W.H., et al. (2011) Nitro-gen-Doped Graphene for High-Performance Ultracapacitors and the Importance of Nitrogen-Doped Sites at Basal Planes. Nano Letters, 11, 2472-2477. https://doi.org/10.1021/nl2009058
Wu, J., Xie, M., Li, Y.G., et al. (2011) Controlled Chlorine Plasma Reac-tion for Noninvasive Graphene Doping. Journal of the American Chemical Society, 133, 19668-19671. https://doi.org/10.1021/ja2091068
Zhang, X., Wang, H., Song, Y., et al. (2013) Impact of Chlorine Func-tionalizationon High-Mobility Chemical Vapor Deposition Grown Grapheme. ACS Nano, 7, 7262-7270. https://doi.org/10.1021/nn4026756
Li, N., Wang, Z.Y., Zhao, K.K., et al. (2010) Large Scale Synthesis of N-Doped Multi-Layered Graphene Sheets by Simple Arc-Discharge Method. Carbon, 48, 255-259. https://doi.org/10.1016/j.carbon.2009.09.013
Panchakarla, L.S., Subrahmanyam, K.S., Saha, S.K., et al. (2009) Synthesis, Structure, and Properties of Boron and Nitrogen-Doped Grapheme. Advanced Materials, 21, 4726-4730. https://doi.org/10.1002/adma.200901285
Li, X.L., Wang, H.L., Robinson, J.T., et al. (2009) Simultaneous Nitrogen Doping and Reduction of Graphene Oxide. Journal of the American Chemical Society, 131, 15939-15944. https://doi.org/10.1021/ja907098f
Sheng, Z.H., Shao, L., Chen, J.J., et al. (2011) Catalyst-Free Synthesis of Nitrogen-Doped Graphene via Thermal Annealing Graphite Oxide with Melamine and Its Excellent Electrocatalysis. ACS Nano, 5, 4350-4358. https://doi.org/10.1021/nn103584t
Lin, Z.Y., Waller, G.H., Liu, Y., et al. (2013) Simple Preparation of Na-noporous Few-Layer Nitrogen-Doped Graphene for Use as an Efficient Electrocatalyst for Oxygen Reduction and Ox-ygen Evolution Reactions. Carbon, 53, 130-136. https://doi.org/10.1016/j.carbon.2012.10.039
Lai, L., Potts, J.R., Zhan, D., et al. (2012) Exploration of the Active Center Structure of Nitrogen-Doped Graphene-Based Catalysts for Oxygen Reduction Reaction. Energy & Environmental Science, 5, 7936-7942. https://doi.org/10.1039/c2ee21802j
Hou, S., Cai, X., Wu, H., et al. (2013) Nitrogen-Doped Graphene for Dye-Sensitized Solar Cells and the Role of Nitrogen States in Triiodide Reduction. Energy & Environmental Science, 6, 3356-3362. https://doi.org/10.1039/c3ee42516a
Choi, C., Chung, M., Park, S., et al. (2013) Enhanced Electrochemical Oxygen Reduction Reaction by Restacking of N-Doped Single Graphene Layers. RSC Advances, 3, 4246-4253. https://doi.org/10.1039/c3ra23180a
Liu, J., Chang, H., Truong, Q.D., et al. (2013) Synthesis of Nitro-gen-Doped Graphene by Pyrolysis of Ionic-Liquid-Functionalized Grapheme. Journal of Materials Chemistry C, 1, 1713-1716. https://doi.org/10.1039/c3tc00191a
Park, S., Hu, Y., Hwang, J.O., et al. (2012) Chemical Structures of Hy-drazine-Treated Graphene Oxide and Generation of Aromatic Nitrogen Doping. Nature Communications, 3, 638. https://doi.org/10.1038/ncomms1643
Jiang, B., Tian, C., Wang, L., et al. (2012) Highly Concentrated, Stable Nitrogen-Doped Graphene for Supercapacitors: Simultaneous Doping and Reduction. Applied Surface Science, 258, 3438-3443. https://doi.org/10.1016/j.apsusc.2011.11.091
Sun, L., Wang, L., Tian, C., et al. (2012) Nitrogen-Doped Graphene with High Nitrogen Level via a One-Step Hydrothermal Reaction of Graphene Oxide with Urea for Superior Capacitive Energy Storage. RSC Advances, 2, 4498-4506. https://doi.org/10.1039/c2ra01367c
Lee, J.W., Ko, J.M. and Kim, J. (2012) Hydrothermal Preparation of Ni-trogen-Doped Graphene Sheets via Hexamethylenetetramine for Application as Supercapacitor Electrodes. Electrochimica Acta, 85, 459-466. https://doi.org/10.1016/j.electacta.2012.08.070
Zhang, Y., Fugane, K., Mori, T., et al. (2012) Wet Chemical Synthesis of Nitrogen-Doped Graphene towards Oxygen Reduction Electrocatalysts without High-Temperature Pyrolysis. Journal of Materials Chemistry, 22, 6575-6580. https://doi.org/10.1039/c2jm00044j
Chang, Y., Han, G., Yuan, J., et al. (2013) Using Hydroxylamine as a Reducer to Prepare N-Doped Graphene Hydrogels Used in High-Performance Energy Storage. Journal of Power Sources, 238, 492-500. https://doi.org/10.1016/j.jpowsour.2013.04.074
Ballesteros-Garrido, R., Baldovi, H., Latorre-Sanchez, M., et al. (2013) Photocatalytic Hydrogen Generation from Water-Methanol Mixtures Using Halogenated Reconstituted Graphenes. Journal of Materials Chemistry A, 1, 11728-11734. https://doi.org/10.1039/c3ta11918a
Wu, Z.S., Winter, A., Chen, L., et al. (2012) Three-Dimensional Nitrogen and Boron Co-Doped Graphene for High-Performance All-Solid-State Supercapacitors. Advanced Materials, 24, 5130-5135. https://doi.org/10.1002/adma.201201948