当飞行器以高超声速飞行时,其前方的气体剧烈压缩和粘性阻滞引起热障问题。由于高超声速流中非平衡效应对气动热的影响很大,化学非平衡效应成为高超声速气动热领域研究的关键问题之一。本文简要介绍了非平衡效应和真实气体效应,在此基础上,综述了化学非平衡模型下气动热数值模拟的研究进展,包括真实气体效应、化学非平衡效应、化学反应模型、近壁面第一层网格高度对气动热数值模拟结果的影响,以及化学非平衡流条件下圆球高超声速绕流的激波脱体距离随马赫数的变化规律,该规律有待相关风洞试验的验证。文章最后指出湍流对化学非平衡效应的影响及辐射效应对气动热数值模拟的影响是值得关注的研究方向。 When the aircraft flies at hypersonic velocity, the intense compression of gas and the viscous block make the temperature rise sharply, which results in “thermal barrier” problem. The chemical non-equilibrium effect becomes one of the key issues in the research of hypersonic aerodynamics as the non-equilibrium effect in hypersonic flow has a great influence on the aerodynamic. Non-equilibrium effect and “real gas effect” are briefly introduced in this thesis. The developments chemical non-equilibrium effects in numerical simulation of aerodynamic heating were reviewed, including chemical non-equilibrium effect, “real gas effect”, chemical reaction model, the first grid spacing. The shock wave standoff distance is numerically simulated by chemical non-equilibrium flow passing a sphere and the relationship between the shock wave standoff distance with Mach number is analyzed, this law needs to be verified by subsequent tests. Finally, it is pointed out that the effect of turbulence on chemical non-equilibrium effect and the effect of radiation on numerical simulation of aerodynamic heating are worthy of attention.
k f j = A 1 , f j T A 2 , f j exp ( − A 3 , f j T ) (1.1)
k b j = A 1 , b j T A 2 , b j exp ( − A 3 , b j T ) (1.2)
式中, 、 k b j 为正向化学反应速率和逆向化学反应速率, A 1 , f j 、 A 2 , f j 、 A 3 , f j 为正向化学反应速率常数, A 1 , b j 、 A 2 , b j 、 A 3 , b j 为逆向化学反应速率常数。Gupta综合了Dunn & Kang的空气11组分(N2、O2、N、O、NO、 N 2 + 、 O 2 + 、N+、O+、NO+、e−)化学反应数据而得到的反应速率系数计算常数,总计归纳为20种反应式(如表1)。
Chemical reaction and reaction rate coefficient of Gupta mode
赵一朴,胡雨濛,黄海明. 高超声速气动热数值模拟中化学非平衡效应 Developments of Chemical Non-Equilibrium Effects in Numerical Simulation of Aerodynamic Heating in Hypersonic Flow[J]. 力学研究, 2018, 07(04): 126-144. https://doi.org/10.12677/IJM.2018.74015
参考文献References
黄国. 高超声速环境下缝隙热环境的数值模拟研究[D]: [博士学位论文]. 北京: 北京交通大学, 2017.
胡雨濛. 近空间高超声速气动热的数值模拟[D]: [博士学位论文]. 北京: 北京交通大学, 2018.
Houwing, A.F.P., Nonaka, S. and Takayama, K. (2000) Effects of Vibrational Relaxation on Bow Shock Standoff Distance for Nonequil-librium Flows. AIAA Journal, 38, 1760-1763. https://doi.org/10.2514/2.1167
Liou, M.S. and Steffen, C.J. (1993) A New Flux Splitting Scheme. Journal of Computational Physics, 107, 23-39. https://doi.org/10.1006/jcph.1993.1122
唐伟, 杨肖峰, 桂业伟, 杜雁霞. 火星进入器高超声速气动力/热研究综述[J]. 宇航学报, 2017, 38(3): 230-239.
Grantham, W.L. (1970) Flight Results of 25000 Foot per Second Reentry Experiment Using Microwave Reflectometers to Measure Plasma Electron Density and Standoff Distance. NASA TN D-6062.
Hash, D., Olejniczak, J., Wright, M., et al. (2013) FIRE II Calculations for Hypersonic Nonequilibrium Aerothermodynamics Code Verification: DPLR, LAURA, and US3D. AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2007-605.
Voland, R.T., Huebner, L.D. and McClinton, C.R. (2006) X-43A Hyper-sonic Vehicle Technology Development. Acta Astronautica, 59, 181-191. https://doi.org/10.1016/j.actaastro.2006.02.021
Dufrene, A., Maclean, M., Parker, R., et al. (2011) Experimental Characterization of the LENS Expansion Tunnel Facility Including Blunt Body Surface Heating. 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, 4-7 January 2011, AIAA 2011-626. https://doi.org/10.2514/6.2011-626
Knight, D., Longo, J., Drikakis, D., et al. (2012) Assessment of CFD Capability for Prediction of Hypersonic Shock Interactions. Progress in Aerospace Sciences, 48-49, 8-26. https://doi.org/10.1016/j.paerosci.2011.10.001
Cai, C.P. (2016) Numerical Simulations of High Enthalpy Flows around Entry Bodies. Chinese Journal of Aeronautics, 29, 326-334. https://doi.org/10.1016/j.cja.2016.02.009
Sun, X.W., Guo, Z.Y., Huang, W., et al. (2017) A Study of Performance Parameters on Drag and Heat Flux Reduction. Acta Astronautica, 131, 204-225. https://doi.org/10.1016/j.actaastro.2016.11.044
Orlik, E., Fedioun, I. and Davidenko, D. (2011) Bounda-ry-Layer Transition on a Hypersonic Forebody Experiments and Calculations. Journal of Spacecraft and Rockets, 48, 545-555. https://doi.org/10.2514/1.51570
Wang, S.Y., Yan, C., Ju, S.J., et al. (2017) Uncertainty Analysis of Laminar and Turbulent Aeroheating Predictions for Mars Entry. International Journal of Heat and Mass Transfer, 112, 533-543. https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.126
Tao, Z., Cheng, Z.Y., Zhu, J.Q., et al. (2016) Effect of Turbulence Models on Predicting Convective Heat Transfer to Hydrocarbon Fuel at Supercritical Pressure. Chinese Journal of Aeronautics, 29, 1247-1261. https://doi.org/10.1016/j.cja.2016.08.007
Kitamura, K., Shima, E. and Roe, P.L. (2012) Carbuncle Phenomena and Other Shock Anomalies in Three Dimensions. AIAA Journal, 50, 2655-2669. https://doi.org/10.2514/1.J051227
Park, C. (1985) On Convergence of Computation of Chemically Reacting Flows. 23rd Aerospace Sciences Meeting, Reno, AIAA 85-0247.
Park, C. (1988) Assessment of Two-Temperature Kinetic Model for Dissociating and Weakly Ionizing Nitrogen. Journal of Thermophysics and Heat Transfer, 2, 8-16. https://doi.org/10.2514/3.55
Park, C. (1989) A Review of Reaction Rates in High Tem-perature Air. 24th Thermophysics Conference, Buffalo, AIAA 89-1740.
Park, C., John, T.H., Richard, L.J., et al. (1991) Chemical-Kinetic Problems of Future NASA Missions. 29th Aerospace Sciences Meeting, Reno, AIAA 91-0464. https://doi.org/10.2514/6.1991-464
Park, C., Richard, L.J. and Partridge, H. (2001) Chemical-Kinetic Parameters of Hyperbolic Earth Entry. Journal of Thermophysics and Heat Transfer, 15, 76-90. https://doi.org/10.2514/2.6582
Dunn, M.G. and Kang, S.W. (1973) Theoretical and Experimental Studies of Reentry Plasmas. NASA Contractor Report, NASA CR-2232.
Gupta, R.N., Yos, J.M. and Thompson, R.A. (1989) A Preview of Reaction Rates and Thermodynamics and Transport Properties for the 11-Species Air Model for Chemical and Thermal Non-Equilibrium Calculations to 30000K. NASA TM-101528.
Gnoffo, P.A. and McCandless, R.S. (1986) Three-Dimensional AOTV Flow Fields in Chemical Nonequilibrium. 24th Aerospace Sciences Meeting, Aerospace Sciences Meetings, Reno, AIAA 86-0230. https://doi.org/10.2514/6.1986-230
Ghislain, T. and David, E.Z. (2009) Effects of Chemistry in Nonequilibrium Hypersonic Flow around Blunt Bodies. Journal of Thermophysics and Heat Transfer, 23, 433-442. https://doi.org/10.2514/1.42665
Stefan, S. and Uwe, R. (2000) Transport Coefficients of Reacting Air at High Temperatures. 38th Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings, Reno, AIAA 2000-211.
Magin, T.E. and Degrez, G. (2004) Transport Algorithms for Partially Ionized and Unmagnetized Plasmas. Journal of Computational Physics, 198, 424-449. https://doi.org/10.1016/j.jcp.2004.01.012
潘沙. 高超声速气动热数值模拟方法及大规模并行计算研究[D]. 武汉: 国防科学技术大学, 2010.
Lobb, R.K. (1964) Experimental Measurement of Shock Detachment Distance on Sphere Fired in Air at Hypervelocities. AGARDograph, 68, 519-527.
Papadopoulos, P.E., Prabhu, D.K., Wright, M.J., et al. (2001) CFD Simulations in Support of Shuttle Orbiter Contingency Abort Aerodynamic Database Enhancement. 35th AIAA Thermophysics Conference, Fluid Dynamics and Co-Located Conferences, Anaheim, AIAA 2001-3067. https://doi.org/10.2514/6.2001-3067
Prabhu, D.K., Papadopoulos, P.E., Davies, C.B., et al. (2003) Shuttle Orbiter Contingency Abort Aerodynamics, II: Real-Gas Effects and High Angles of Attack. 41st Aerospace Sciences Meeting and Exhibit Reno, Nevada, AIAA 2003-1248. https://doi.org/10.2514/6.2003-1248
石晓峰. 高超声速进气道流动的高温非平衡效应初探[C]//中国力学学会激波与激波管专业委员会. 第十六届全国激波与激波管学术会议论文集. 中国力学学会激波与激波管专业委员会: 中国力学学会, 2014: 7.
Neal, P., Zhong, X.L., John, K., et al. (2010) Numerical Study of Hypersonic Receptivity with Thermochemical Non-Equilibrium on a Blunt Cone. 40th Fluid Dynamics Conference and Exhibit, Chicago, AIAA 2010-4446.
Ghislain, T., Yves, B. and David, E.Z. (2005) Numerical Study of Non-Equilibrium Weakly Ionized Air Flow Past Blunt Bodies. International Journal of Numerical Methods for Heat and Fluid Flow, 15, 588-610. https://doi.org/10.1108/09615530510601477
Erin, F., Iain, D.B. and Alexandre, M. (2013) Numerical Prediction of Hypersonic Flowfields Including Effects of Electron Translational Nonequilibrium. Journal of Thermophysics and Heat Transfer, 27, 593-606. https://doi.org/10.2514/1.T3963
Iain, D.B., Kerry, A.T. and Michael, J.W. (2010) Modeling of Stardust Entry at High Altitude, Part 1: Flowfield Analysis. Journal of Spacecraft and Rockets, 47, 708-717. https://doi.org/10.2514/1.37360
Ghislain, T. and David, E.Z. (2008) Computation of Weakly Ionized Air Flow in Thermochemical Nonequilibrium over Sphere-Cones. International Journal of Heat and Fluid Flow, 29, 1393-1401. https://doi.org/10.1016/j.ijheatfluidflow.2008.06.002
Klopfer, G.H. and Yee, H.C. (1988) Viscous Hypersonic Shock-on-Shock Interaction on Blunt Cowl Lips. AIAA-1988-0233, Reno. https://doi.org/10.2514/6.1988-233
阎超, 禹建军, 李君哲. 热流CFD计算中格式和网格效应若干问题研究[J]. 空气动力学学报, 2006(1): 125-130.
Yang, J.L. and Liu, M. (2017) A Wall Grid Scale Criterion for Hyper-sonic Aerodynamic Heating Calculation. Acta Astronautica, 136, 137-143. https://doi.org/10.1016/j.actaastro.2016.11.043
潘沙, 冯定华, 丁国昊, 田正雨, 杨越明, 李桦. 气动热数值模拟中的网格相关性及收敛[J]. 航空学报, 2010, 31(3): 493-499.
Josyula, E., Gaitonde, D. and Shang, J.S. (1991) Nonequilibrium Hypersonic Flow Solutions Using the Roe Flux-Difference Split Scheme. AIAA 22nd Fluid Dynamics, Plasma Dynamics, Honolulu, AIAA 1991-1700.
Hu, Y.M., Huang, H.M. and Zhang, Z.M. (2017) Numerical Simulation of a Hypersonic Equilibrium Flow Past a Blunt Body. International Journal of Numerical Methods for Heat and Fluid Flow, 27, 1351-1364. https://doi.org/10.1108/HFF-05-2016-0187
Hornung, H.G. (1972) Non-Equilibrium Dissociating Nitrogen Flow over Spheres and Circular Cylinders. Journal of Fluid Mechanics, 53, 149-176. https://doi.org/10.1017/S0022112072000084
Wada, Y. and Liou, M.S. (1994) A Flux Splitting Scheme with High-Resolution and Robustness for Discontinuities. 32nd Aerospace Sciences Meeting & Exhibit, Reno, AIAA 94-0083. https://doi.org/10.2514/6.1994-83
Park, C., Gai, S.L. and Neely, A.J. (2016) Base Flow of Circular Cylinder at Hypersonic Speeds. AIAA Journal, 54, 458-468. https://doi.org/10.2514/1.J054270
Brian, R.H. and Dinesh, K.P. (2013) Assessment of Laminar, Convective Aeroheating Prediction Uncertainties for Mars-Entry Vehicles. Journal of Spacecraft and Rockets, 50, 56-68. https://doi.org/10.2514/1.A32257
Zander, F., Gollan, R.J., Jacobs, P.A., et al. (2014) Hypervelocity Shock Standoff on Spheres in Air. Shock Wave, 24, 171-178. https://doi.org/10.1007/s00193-013-0488-x
Martel, J., Jolly, B. and Lawrence, W. (2015) Shock Standoff and Shape Predictions with Validation for Flat Face Cylinder. AIAA Atmospheric Flight Mechanics Conference, Kissimmee, AIAA 2015-0523. https://doi.org/10.2514/6.2015-0523
Nonaka, S., Tokitada, H., Furudate, M., et al. (2011) Measurement of Density Distribution over a Hemisphere in Ballistic Range. Journal of Thermophysics and Heat Transfer, 25, 464-468. https://doi.org/10.2514/1.51123
Kim, K.H., Kim, C. and Rho, O.H. (2001) Methods for the Accurate Computations of Hypersonic Flows I. AUSMPW+ Scheme. Journal of Computational Physics, 174, 38-80. https://doi.org/10.1006/jcph.2001.6873
Anderson, J.D. (1989) Hypersonic and High Temperature Gas Dynamics. McGraw-Hill Book Company, New York.
Kim, K.H., Kim, C. and Rho, O.-H. (2001) Methods for the Accurate Computations of Hypersonic Flows II. Shock-Aligned Grid Technique. Journal of Computational Physics, 174, 81-119. https://doi.org/10.1006/jcph.2001.6896
Yumusak, M. and Eyi, S. (2013) Aerothermodynamic Shape Optimization of Hypersonic Blunt Bodies. 21st AIAA Computational Fluid Dynamics Conference, San Diego, AIAA 2013-2693. https://doi.org/10.2514/6.2013-2693
Ishihara, T., Ogino, Y., Kino, T., et al. (2016) Numerical Study on Wall Pressure over Cone Region of Blunt-Nosed Body in High Enthalpy Shock Tunnel HIEST. Aerospace Science and Technology, 50, 256-265. https://doi.org/10.1016/j.ast.2015.12.015
Dwoyer, D.L., Newman, P.A., Thames, F.C., et al. (1982) Flow through the Tile Gaps in the Space Shuttle Thermal Protection System. AIAA 20th Aerospace Sciences Meeting, Orlando, AIAA 82-0001.
Belouaggadia, N., Olivier, H. and Brun, R. (2008) Numerical and Theoretical Study of the Shock Stand-Off Distance in Non-Equilibrium Flows. Journal of Fluid Mechanics, 607, 167-197. https://doi.org/10.1017/S0022112008001973
Sharma, M., Swanatek, A.B., Fla-herty, W., et al. (2010) Expansion Tube Investigation of Shock Stand-Off Distances in High-Enthalpy CO2 Flow over Blunt Bodies. 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, AIAA 2010-1566. https://doi.org/10.2514/6.2010-1566
Kirk, B.S., Stognery, R.H., Olivery, T.A., et al. (2013) Recent Advancements in Fully Implicit Numerical Methods for Hypersonic Reacting Flows. 21st AIAA Computational Fluid Dynamics Conference, San Diego, AIAA 2013-2559. https://doi.org/10.2514/6.2013-2559
Roncioni, P., Ranuzzi, G., Marini, M., et al. (2015) Experimental and Numerical Investigation of Aerothermal Characteristics of Hypersonic Intermediate Experimental Vehicle. Journal of Spacecraft and Rockets, 48, 291-302.
Drummond, J.P. (2014) Methods for Prediction of High-Speed Reacting Flows in Aerospace Propulsion. AIAA Journal, 52, 465-485. https://doi.org/10.2514/1.J052283
Nonaka, S., Mizuno, H., Takayama, K., et al. (2000) Measurement of Shock Standoff Distance for Sphere in Ballistic Range. Journal of Thermophysics and Heat Transfer, 14, 225-229. https://doi.org/10.2514/2.6512
Gülhan, A., Siebe, F., Thiele, T., et al. (2014) Sharp Edge Flight Experiment-II Instrumentation Challenges and Selected Flight Data. Journal of Spacecraft and Rockets, 51, 175-186. https://doi.org/10.2514/1.A32572
Sziroczak, D. and Smith, H. (2016) A Review of Design Issues Specific to Hypersonic Flight Vehicles. Progress in Aerospace Sciences, 84, 1-28. https://doi.org/10.1016/j.paerosci.2016.04.001
Qian, G. and Wang, B.G. (2011) A Comparative Study of Navier-Stokes and DSMC Simulation of Hypersonic Flowfields. 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, AIAA 2011-765.