尽管土壤重金属复合污染问题在全球范围内广泛存在且带来日益严重的生态环境问题,但与其相关的生态毒性风险预测和毒性机制研究工作仍需进一步展开。生物毒理学模型如生物配体模型(BLM)和植物根细胞膜表面电势模型在单一金属毒性评估中得到了广泛的应用,而其在土壤重金属复合污染领域也存在一定的应用潜力。亚细胞分离技术和同步辐射技术已经被应用于重金属生物毒性机制的研究中,且能够为土壤重金属的交互作用类型及生态风险评估提供机理性解释。 Although the combined soil heavy metal contamination is widespread in the world and causes se-rious ecological risks, there still exists further need to carry out the ecological risk prediction and toxicity mechanism research on multiple metals. The toxicological models such as the biotic ligand model (BLM) and the plant root cell membrane surface potential model have been widely used in evaluating the single metal toxicity, while we should pay special attention to their potential appli-cation in assessing the toxicity of multiple metals. The subcellular partition technology and syn-chrotron radiation technology also have been extensively used in studying the toxicity mechanism of heavy metals, moreover, they can provide the mechanism explanations for assessing the inter-action patterns and ecological risks in soil.
土壤,重金属复合污染,生物毒性模型,毒性机制, Soil
Multiple Metal Contamination
Toxicity Model
Toxic Mechanism
土壤重金属复合污染生物毒性研究概述
汪宜敏,陈耀祖. 土壤重金属复合污染生物毒性研究概述 Review of the Research on Soil Multiple Metal Toxicity[J]. 环境保护前沿, 2018, 08(06): 492-497. https://doi.org/10.12677/AEP.2018.86061
参考文献References
保护部, 国土资源部. 全国土壤污染状况调查公报[Z]. 2014-04-17.
周东美, 王慎强. 土壤中有机污染物—重金属复合污染的交互作用[J]. 土壤与环境, 2000, 9(2): 143-145.
Cao, X., Wahbi, A., Ma, L., et al. (2009) Immobilization of Zn, Cu, and Pb in Contaminated Soils Using Phosphate Rock and Phosphoric Acid. Journal of Hazardous Materials, 164, 555-564. https://doi.org/10.1016/j.jhazmat.2008.08.034
Shute, T. and Macfie, S.M. (2006) Cadmium and Zinc Accumulation in Soybean: A Threat to Food Safety? Science of the Total Environment, 371, 63-73. https://doi.org/10.1016/j.scitotenv.2006.07.034
Wang, P., Zhou, D., Kinraide, T.B., et al. (2008) Cell Membrane Surface Potential (ψ0) Plays a Dominant Role in the Phytotoxicity of Copper and Arsenate. Plant Physiology, 148, 2134-2143. https://doi.org/10.1104/pp.108.127464
Lock, K., Criel, P., De Schamphelaere, K.A.C., et al. (2007) Influence of Calcium, Magnesium, Sodium, Potassium and pH on Copper Toxicity to Barley (Hordeum vulgare). Ecotoxicology and Environmental Safety, 68, 299-304. https://doi.org/10.1016/j.ecoenv.2006.11.014
Wang, Y.M., Kinraide, T.B., Wang, P., et al. (2014) Surface Electrical Po-tentials of Root Cell Plasma Membranes: Implications for ion Interactions, Rhizotoxicity, and Uptake. International Journal of Mo-lecular Sciences, 15, 22661-22677. https://doi.org/10.3390/ijms151222661
Van Genderen, E., Adams, W., Dwyer, R., et al. (2015) Modeling and Interpreting Biological Effects of Mixtures in the Environment: Introduction to the Metal Mixture Modeling Evaluation Project. Environmental Toxicology and Chemistry, 34, 721-725. https://doi.org/10.1002/etc.2750
陈中智. 生物配体模型(BLM)对于评价金属联合毒性的适用性研究[D]: [博士学位论文]. 天津: 南开大学, 2010.
Vijver, M.G., et al. (2004) Internal Metal Sequestration and Its Ecotoxicological Relevance: A Review. Environmental Science & Technology, 38, 4705-4712. https://doi.org/10.1021/es040354g
Li, D., Zhou, D., Wang, P., et al. (2011) Subcellular Cd Distribution and Its Correlation with Antioxidant Enzymatic Activities in Wheat (Triticum aestivum) Roots. Ecotoxicology and Environmental Safety 74, 874-881. https://doi.org/10.1016/j.ecoenv.2010.12.006
Wallace, W.G. and Luoma, S.N. (2003) Subcellular Compartmentalization of Cd and Zn in Two Bivalves. II. Significance of Trophically Available Metal (TAM). Marine Ecology Progress Series, 257, 125-137. https://doi.org/10.3354/meps257125
Isaure, M.P., Fayard, B., Sarret, G., et al. (2006) Localization and Chemical Forms of Cadmium in Plant Samples by Combining Analytical Electron Microscopy and X-Ray Spectromicroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy, 61, 1242-1252. https://doi.org/10.1016/j.sab.2006.10.009
Papazoglou, E. (2011) Responses of Cynara cardunculus L. to Single and Combined Cadmium and Nickel Treatment Conditions. Ecotoxicology and Environmental Safety, 74, 195-202. https://doi.org/10.1016/j.ecoenv.2010.06.026