本文首先扼要地回顾了网络控制理论和量化控制理论的发展,将网络控制与量化控制相结合,对其结构和特征进行分析和研究,重点探讨和回顾了基于网络的量化反馈控制系统在考虑时延、丢包、量化以及网络带宽等因素下的稳定性分析、量化器设计、控制器设计、鲁棒性分析等的研究成果和发展现状,最后对基于网络的量化控制系统的研究现状给出了一些较为全面的描述,同时也提出了一些尚未解决的问题,就未来进一步的研究工作有一定的指导意义。 Firstly, the development of network control theory and quantitative control theory were briefly reviewed in this article. Network control was combined with quantitative control whose structures and characteristics were analyzed and studied. The development status and research achievements of stability analysis, quantizer design, controller design, robustness analysis and so on based on the quantization feedback control system considering the delay, pack loss, quantization, network bandwidth and other factors were focused on and reviewed. Finally, the research status of network quantization control system was given some more all-sided description; at the same time, some problems to be solved were presented which give the guidance meaning for the further research work in the future.
网络控制,量化控制,量化器,稳定性分析, Network Control
Quantitative Control
Quantizer
Stability Analysis
基于网络的量化反馈控制系统综述
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/
1. 引言
网络控制系统(Network Control Systems, NCSs)是指反馈控制回路通过各种网络信道连接而形成的闭环控制系统,同时也是一种全分布、网络化、集成化和节点智能化的实时反馈控制系统。在NCSs中,传感器、控制器、执行器及被控对象和通讯网络连接在一起,设备之间的数据通过一个共享的网络通道进行传输,从而实现设备之间资源共享和协调操作,其典型的NCSs基本结构如图1所示。
NCSs的显著特点是控制器与被控对象之间的信息传输是通过通信网络实现的。由于通信网络单次传输的比特值为有限个数,因此系统状态 x k 在传输前必须进行离散化。在系统回路中,量化编码器 Q k : R n → S k 的作用是把系统状态 x k 映射到集合 S k 中的单个元素,单个元素被编码成可用于通信传输的二进制序列。在信道的另一端,解码器接收信道输出并生成状态估计 x ^ k 。在上述过程中,由于编码/解码器的存在将系统状态 x k 离散化后从而产生了量化误差,即 x k − x ^ k ≠ 0 ,而如何刻画量化误差对系统的影响是需要解决的一个基本问题。直观地分析,如果通信数率越低,则 S k 的元素数量越少,量化误差越大;反之亦然,如果量化误差太大,则控制器获得的系统信息越少,以至它可能无法使该系统稳定。因此,减少和量化误差对系统控制性能和稳定性的影响成为网络控制研究的一个热点课题。根据对量化问题的研究分析,总结出两条主线:第一,在量化器的选择问题上,不同的量化器不仅具有不同的量化误差,而且对系统稳定性也有不同的影响;第二,在量化密度的设计问题上,不同的量化器具有不同的量化密度特性,并且随着外界条件的变化,量化密度也一直保持或变化,这对NCSs的稳定性和控制性能均有较大影响。现有关于NCSs量化状态反馈控制的研究主要集中在如图2所示的系统结构,考虑n维离散时间系统:
x k + 1 = A x k + B u k (1)
式中, x k ∈ R n 是系统状态, u k ∈ R m 是控制输入,且(A, B)是可镇定的。
为了进一步分析量化器,我们分析量化器的当前状态,即静态量化器和动态量化器。静态量化策略的量化范围是常数,并且每个比特通过固定(静态)方法被映射到量化范围的特定子集。这种方法易与实现,但想保证一个无噪声控制系统的稳定性,量化比特数需要满足 R → ∞ 要求,而量化比特数为有限个数时,最终只能达到状态变量的界。相对于静态量化策略,动态量化策略可以选择一个可变的量化范围,并且量化比特数与量化范围的子集之间的映射关系也可以是时变的,虽然量化过程相对复杂,但是动态量化策略可以通过有限个量化比特数来保证无线噪声线性系统的渐进稳定性。最终控制结果表明在带宽约束的情况下动态量化策略比静态量化策略具有更多优势。
冯宜伟,任方杰,杨丹丹. 基于网络的量化反馈控制系统综述 Review of Quantitative Feedback Control System Based on Network[J]. 动力系统与控制, 2018, 07(03): 190-200. https://doi.org/10.12677/DSC.2018.73021
参考文献References
Kalman, R.E. (1956) Nonlinear Aspects of Sampled-Data Control Systems. In: Nonlinear Circuit Theory Symposium, 273-313.
Delchamps, D.F. (1990) Stabilizing a Linear System with Quantized State Feedback. IEEE Transactions on Automatic Control, 35, 916-924. https://doi.org/10.1109/9.58500
Brockett, R.W. and Liberzon, D. (2015) Quantized Feedback Stabilization of Linear Systems. IEEE Transactions on Automatic Control, 45, 1279-1289. https://doi.org/10.1109/9.867021
Liberzon, D. (2003) Hybrid Feedback Stabilization of Systems with Quan-tized Signals. Pergamon Press, Vol. 39, 1543-1554.
Liberzon, D. and Nesic, D. (2005) Input-to-State Stabilization of Linear Systems with Quantized Feedback. Proceedings of the 44th IEEE Conference on Decision and Control, Seville, 15 December 2005, 8197-8202. https://doi.org/10.1109/CDC.2005.1583489
Liberzon, D. and Nesic, D. (2007) Input-to-State Stabilization of Linear Systems with Quantized State Measurements. IEEE Transactions on Automatic Control, 52, 767-781. https://doi.org/10.1109/TAC.2007.895850
Shannon, C.E. (1948) A Mathematical Theory of Communications. Bell System Technical Journal, 27, 379-423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
Oliver, B.M. and Pierce, J.R. (1948) The Philosophy of PCM. Proceedings of the IRE, 36, 1324-1331. https://doi.org/10.1109/JRPROC.1948.231941
Bennett, W.R. (1948) Spectra of Quantized Signals. Bell Labs Technical Journal, 27, 446-472. https://doi.org/10.1002/j.1538-7305.1948.tb01340.x
Widrow, B., Kollar, I. and Liu, M.C. (1996) Statistical Theory of Quantization. IEEE Transactions on Instrumentation & Measurement, 45, 353-361. https://doi.org/10.1109/19.492748
Nair, G.N. and Evans, R.J. (2000) Stabilization with Data-Rate-Limited Feedback: Tightest Attainable Bounds. Systems & Control Letters, 41, 49-56. https://doi.org/10.1016/S0167-6911(00)00037-2
Elia, N. and Mitter, S.K. (2002) Stabilization of Linear Systems with Limited Information. IEEE Transactions on Automatic Control, 46, 1384-1400. https://doi.org/10.1109/9.948466
Fu, M. and Xie, L. (2005) The Sector Bound Approach to Quantized Feedback Control. IEEE Transactions on Automatic Control, 50, 1698-1711. https://doi.org/10.1109/TAC.2005.858689
Gao, H. and Chen, T. (2008) A New Approach to Quantized Feedback Control Systems. Automatica, 44, 534-542. https://doi.org/10.1016/j.automatica.2007.06.015
Åström, K.J. and Bo, B. (1999) Comparison of Periodic and Event Based Sampling for First Order Stochastic Systems. IFAC Proceedings Volumes, 32, 5006-5011. https://doi.org/10.1016/S1474-6670(17)56852-4
马巧利, 周川, 陈兰浪. 网络控制系统的事件触发与量化控制协同设计[J]. 系统工程与电子技术, 2016, 38(3): 652-657.
王权, 邹媛媛, 牛玉刚. 带有量化的事件触发预测控制[J]. 华东理工大学学报(自然科学版), 2016, 42(2): 240-246.
Ramirez, J.R. and Sugimoto, K.J. (2017) Event-Triggered Dynamic Quantizers for Networked Control Systems. IFAC PapersOnLine, 50, 5190-5195. https://doi.org/10.1016/j.ifacol.2017.08.450
Rago, C., Willett, P. and Barshalom, Y. (1996) Censoring Sensors: A Low-Communication-Rate Scheme for Distributed Detection. IEEE Transactions on Aerospace & Electronic Systems, 32, 554-568. https://doi.org/10.1109/7.489500
Xu, Y. and Qi, H. (2004) Distributed Computing Paradigms for Collabora-tive Signal and Information Processing in Sensor Networks. Journal of Parallel & Distributed Computing, 64, 945-959. https://doi.org/10.1016/j.jpdc.2004.04.002
Bahceci, I., Al-Regib, G. and Altunbasak, Y. (2005) Parallel Dis-tributed Detection for Wireless Sensor Networks: Performance Analysis and Design. Global Telecommunications Conference, St. Louis, 5. https://doi.org/10.1109/GLOCOM.2005.1578097
Makarenko, A. and Durrant-Whyte, H. (2006) Decentral-ized Bayesian Algorithms for Active Sensor Networks. Information Fusion, 7, 418-433. https://doi.org/10.1016/j.inffus.2005.09.010
Niu, R., Varshney, P.K. and Cheng, Q. (2006) Distributed De-tection in a Large Wireless Sensor Network. Information Fusion, 7, 380-394. https://doi.org/10.1016/j.inffus.2005.06.003
Shorey, R., Ananda, A., Chan, M. and Ooi, W. (2006) Mobile, Wireless, and Sensor Networks: Technology, Applications, and Future Directions. IEEE Press, Wiley-Interscience, Hoboken.
Cheng, V.W. and Wang, T.Y. (2010) Performance Analysis of Distributed Decision Fusion Using a Censoring Scheme in Wireless Sensor Networks. IEEE Transactions on Vehicular Technology, 59, 2845-2851. https://doi.org/10.1109/TVT.2010.2047738
Wang, T.Y. and Wu, J.Y. (2012) Does More Transmitting Sen-sors Always Mean Better Decision Fusion in Censoring Sensor Networks with an Unknown Size. IEEE Transactions on Communications, 60, 2313-2325. https://doi.org/10.1109/TCOMM.2012.060112.110078
刘守军, 刘克中, 陈伟. 莱斯衰落信道下的筛选传感器网络决策融合[J]. 北京邮电大学学报, 2015, 38(5): 81-85.
Bennett, W.R. (1948) Spectra of Quantized Signals. Bell Labs Technical Journal, 27, 446-472. https://doi.org/10.1002/j.1538-7305.1948.tb01340.x
Jiang, S. and Fang, H. (2013) H∞ Static Output Feedback Control for Nonlinear Networked Control Systems with Time Delays and Packet Dropouts. Isa Transactions, 52, 215-222. https://doi.org/10.1016/j.isatra.2012.10.006
Wang, W., Zhong, S., Nguang, S.K. and Liu, F. (2013) Novel Delay-Dependent Stability Criterion for Uncertain Genetic Regulatory Networks with Interval Time-Varying Delays. Neurocomputing, 121, 170-178. https://doi.org/10.1016/j.neucom.2013.04.034
Du, B., Lam, J. and Shu, Z. (2010) Stabilization for State/Input Delay Systems via Static and Integral Output Feedback. Automatica, 46, 2000-2007. https://doi.org/10.1016/j.automatica.2010.08.005
朱其新, 胡寿松, 侯霞. 长时滞网络控制系统的随机稳定性研究[J]. 东南大学学报(自然科学版), 2003, 33(3): 368-371.
党向东, 张庆灵. 时变时延多包传输网络控制系统的稳定性[J]. 中南大学学报(自然科学版), 2009, 13(S1): 158-163.
于宝琦, 王军义, 王燕锋. 长时延和丢包的网络控制系统保性能控制[J]. 控制工程, 2013, 20(1): 7-10.
Chen, H., Gao, J., Shi, T. and Lu, R. (2016) H∞ Control for Networked Control Systems with Time Delay, Data Packet Dropout and Disorder. Neurocomputing, 179, 211-218. https://doi.org/10.1016/j.neucom.2015.11.092
宋娟. 具有时变时延的网络控制系统的量化控制[J]. 航天控制, 2017(5): 15-18.
Yang, F. and Han, Q.L. (2013) H∞ Control for Networked Systems with Multiple Packet Dropouts. Information Sciences, 252, 106-117. https://doi.org/10.1016/j.ins.2013.06.043
Zhang, J., Lam, J. and Xia, Y. (2014) Output Feedback Delay Compensation Control for Networked Control Systems with Random Delays. Information Sciences, 265, 154-166. https://doi.org/10.1016/j.ins.2013.12.021
Yang, F., Wang, Z., Hung, Y.S. and Gani, M. (2006) H∞ Control for Networked Systems with Random Communication Delays. IEEE Transactions on Automatic Control, 51, 511-518. https://doi.org/10.1109/TAC.2005.864207
Min, K.S., Jin, B.P., Joo, Y.H. and Jin, K.K. (2009) State Feedback Fuzzy-Model-Based Control for Discrete-Time Markovian Jump Nonlinear Systems with Time-Varying Delays. IEEE International Conference on Fuzzy Systems, Jeju Island, 2105-2108.
温丹丽, 刘春雨, 曹晟熙. 具有随机时延和信号量化的H∞控制[J]. 控制工程, 2017, 24(4): 775-780.
周颖, 郑凤, 何磊. 具有时变时延和丢包的网络控制H∞控制[J]. 计算机技术与发展, 2017, 27(5): 164-169.
Li, K. and Baillieul, J. (2004) Robust Quantization for Digital Finite Communication Bandwidth (DFCB) Control. IEEE Transactions on Automatic Control, 49, 1573-1584. https://doi.org/10.1109/TAC.2004.834106
Li, K. and Baillieul, J. (2004) Robust Quantization and Coding for Multidimensional Linear Systems under Data Rate Constraints. Decision and Control, Shenyang, 14-17 December 2004, 1920-1925.
Ling, Q. and Lemmon, M.D. (2004) Stability of Quantized Linear Systems with Bounded Noise under Dynamic Bit Assignment. IEEE Conference on Decision and Control, Nassau, 14-17 December 2004, 1454-1459.
Liberzon, D. (2004) Stabilizing a Nonlinear System with Limited Information. International Symposium on Control, Communications and Signal Processing, Hammamet, 21-24 March 2004, 7-9. https://doi.org/10.1109/ISCCSP.2004.1296205
Liberzon, D. and Hespanha, J.P. (2005) Stabilization of Non-linear Systems with Limited Information Feedback. IEEE Transactions on Automatic Control, 50, 910-915. https://doi.org/10.1109/TAC.2005.849258
Nair, G.N., Evans, R.J., Mareels, I.M.Y. and Moran, W. (2004) Topological Feedback Entropy and Nonlinear Stabilization. IEEE Transactions on Automatic Control, 49, 1585-1597. https://doi.org/10.1109/TAC.2004.834105
Persis, C.D. (2005) N-Bit Stabilization of N-Dimensional Non-linear Systems in Feedforward Form. IEEE Transactions on Automatic Control, 50, 299-311. https://doi.org/10.1109/TAC.2005.843847
Lemmon, M.D. (2010) Asymptotic Stabilization of Dynamically Quantized Nonlinear Systems in Feedforward Form. Control Theory and Technology, 8, 27-33.
Ling, Q., Lemmon, M.D. and Lin, H. (2009) Stabilize an N-Dimensional Quantized Nonlinear Feedforward System with 1 Bit. Decision and Control, Shanghai, 15-18 December 2009, 1986-1991. https://doi.org/10.1109/CDC.2009.5400795
Jiang, X. and Han, Q.L. (2006) Delay-Dependent Robust Stabil-ity for Uncertain Linear Systems with Interval Time-Varying Delay. Automatica, 42, 1059-1065. https://doi.org/10.1016/j.automatica.2006.02.019
Tian, E. and Zhao, X. (2013) Robust H∞ Control for Un-certain Networked Systems with Communication Constraints. Journal of the Franklin Institute, 350, 1926-1943. https://doi.org/10.1016/j.jfranklin.2013.02.010
Hu, S., Zhang, Y., Yin, X. and Du, Z. (2013) T-S Fuzzy-Model-Based Robust Stabilization for a Class of Nonlinear Discrete-Time Networked Control Systems. Nonlinear Analysis Hybrid Systems, 8, 69-82. https://doi.org/10.1016/j.nahs.2012.11.001
Chae, S., Nguang, S.K. and Wang, W. (2014) Robust H∞ Fuzzy Control of Discrete Nonlinear Networked Control Systems: A SOS Approach. Journal of the Franklin Institute, 351, 4065-4083. https://doi.org/10.1016/j.jfranklin.2014.04.013
Chae, S. and Nguang, S.K. (2014) SOS Based Robust H∞ Fuzzy Dynamic Output Feedback Control of Nonlinear Networked Control Systems. IEEE Transactions on Cybernetics, 44, 1204. https://doi.org/10.1109/TCYB.2013.2281458
欧洋, 薛斌强, 董心壮, 高祯. 具有量化的网络不确定系统鲁棒预测控制研究[J]. 青岛大学学报:工程技术版, 2017, 32(3): 31-38.
Zhang, C., Wang, X., Luo, C., Li, J. and Wang, C. (2018) Robust Outer Synchronization between Two Nonlinear Complex Networks with Parametric Dis-turbances and Mixed Time-Varying Delays. Physica A Statistical Mechanics & Its Applications, 494, 251-264. https://doi.org/10.1016/j.physa.2017.12.047