在本文中,针对一维双曲守恒律方程,我们基于微分变换策略提出了一种高阶全离散间断Galerkin方法。与传统间断Galerkin方法相比较,该方法的主要特点为存储量较小,在时间上能够到达任意高阶精度。与ADER方法相比较,避免了复杂的Cauchy-Kowalewski步骤,同时程序编写简单。数值结果表明该方法具有高阶精度,针对间断解保持高分辨率。 In this paper, based on the differential transform strategy, we introduce high order full discrete discontinuous Galerkin methods for one-dimensional hyperbolic conservation laws. Compared with the standard discontinuous Galerkin methods, the current methods enjoy the following advantages including low storage as well as keeping arbitrary high order accuracy in time. In comparison with the ADER methods, the resulting methods avoid the complicated Cauchy-Kowalewski procedure and the coding is easy at the same time. In addition, numerical results also indicate that the resulting methods enjoy genuine high order accuracy for smooth solutions, and keep steep discontinuity transition.
双曲守恒律,间断Galerkin方法,微分变换,高阶精度,全离散, Hyperbolic Conservation Laws
Discontinuous Galerkin Methods
Differential Transformation
High Order Accuracy
Full Discrete
基于微分变换策略的全离散间断Galerkin方法
其中 f ( q ) = 1 2 q 2 : = f ( x , t ) 为流通量。首先得到 Q ( k , 0 ) ,即把初始条件表示为 q ( x , 0 ) = ∑ 0 ∞ Q ( k , 0 ) ( x − x j ) k 。然后,我们把未知函数 q ( x , t ) 以及流通量 f ( x , t ) 都展成时–空Taylor级数
q ( x , t ) = ∑ k = 0 ∞ ∑ h = 0 ∞ Q ( k , h ) ( x − x j ) k ( t − t n ) h ,
f ( x , t ) = ∑ k = 0 ∞ ∑ h = 0 ∞ F ( k , h ) ( x − x j ) k ( t − t n ) h , (2)
其中 F ( k , h ) = 1 2 ∑ r = 0 h ∑ s = 0 h Q ( r , s ) Q ( k − r , h − s ) 。
将(2)中两个等式代入方程(1),得到
∑ k = 0 ∞ ∑ h = 0 ∞ h Q ( k , h ) ( x − x j ) k ( t − t n ) h − 1 = − ∑ k = 1 ∝ ∑ h = 0 ∝ k F ( k , h ) ( x − x j ) k − 1 ( t − t n ) h
调整下求和符号中的下标,得到
∑ k = 0 ∞ ∑ h = 0 ∞ ( h + 1 ) Q ( k , h + 1 ) ( x − x j ) k ( t − t n ) h = − ∑ k = 0 ∞ ∑ h = 0 ∞ ( k + 1 ) F ( k + 1 , h ) ( x − x j ) k ( t − t n ) h
比较上式两端,得到如下递推关系
Q ( k , k + 1 ) = − k + 1 h + 1 F ( k + 1 , h ) (3)
借助于已有的 Q ( k , 0 ) ,并利用递推公式(3),可以得到解 q ( x , t ) 的时–空Taylor级数展开式。
针对方程组,可以逐方程地借助微分变换策略来求解微分方程。
3. 一维问题的全离散DG方法
考虑非线性双曲守恒律方程
U t + F ( U ) x = 0 (4)
首先将方程(4)两端同乘以检验函数 v ( x ) ∈ v h k ,并在时–空单元 I j = [ x j − 1 2 , x j + 1 2 ] × [ t n , t n + 1 ] 上积分,然后利用分部积分得到:
∫ I j U n + 1 v d x d t − ∫ I j U n v d x d t + ∫ t n t n + 1 F ( U ( x j + 1 2 , t ) ) d t ⋅ v ( x j + 1 2 − ) − ∫ t n t n + 1 F ( U ( x j − 1 2 , t ) ) d t ⋅ v ( x j − 1 2 + ) − ∬ I j F ( U ) v x d x d t = 0
对于积分 ∫ t n t n + 1 F ( U ( x j + 1 2 , t ) ) d t = ∫ t n t n + 1 F ( x j + 1 2 , t ) d t ,采用简单的Lax-Friedrichs数值流通量来逼近,即
F ^ j + 1 2 = 1 2 ∫ t n t n + 1 [ F ( x j + 1 2 − , t ) + F ( x j + 1 2 + , t ) − α ( U ( x j + 1 2 + , t ) − U ( x j + 1 2 − , t ) ) ] d t
这里 α = max | λ ( U ) | ,其中 λ ( U ) 为雅克比矩阵 F ' ( U ) 的特征值,并且最大值是在整个计算区域来取。
最后,得到全离散DG方法:对于 ∀ v ( x ) ∈ V h k , U h ∈ V h k 满足
∫ I j U h n + 1 v d x d t − ∫ I j U h n v d x d t + F ^ j + 1 2 ⋅ v ( x j + 1 2 − ) − F ^ j − 1 2 ⋅ v ( x j − 1 2 + ) − ∬ I j F h v x d x d t = 0
由于 U h , F n 均表示为关于x,t的多项式,所以对于积分采用精确积分,从而避免了计算成本较高的Gauss积分。
4. 数值结果
在本节中,通过数值实验来展示所提出的DG方法的良好性能。针对所有数值算例,我们分别将时间与空间取为二次多项式与四次多项式(即分别取 K = H = 2 ,此时取 CFL = 0.18 。或者 K = H = 4 ,同时取 CFL = 0.1 )作为基函数。重力常数g取为9.812。
4.1. 精度测试
借助具有光滑解的算例来测试方法的精度阶。考虑线性对流方程:
{ u t + u x = 0 , 0 ≤ x ≤ 2 u ( x , 0 ) = sin ( π x ) , periodic
将该算例计算至 t = 2 ,同时将方法的数值误差与精度阶分别展示于表1。从表中,可以很明显地发现该方法拥有预期的高阶精度。
4.2. 线性对流方程
借助带有间断解的算例来测试方法能否保持高分辨率
{ u t + u x = 0 , − 1 ≤ x ≤ 1 u ( x , 0 ) = u 0 ( x ) , periodic
Third-order method error and precision orde
网格
L1误差
精度阶
L2误差
精度阶
L¥误差
精度阶
25
1.5172E−04
1.1963E−04
1.5161E−04
50
1.9127E−05
2.99
1.5076E−05
2.99
1.9107E−05
2.99
100
2.3568E−06
3.02
1.8539E−06
3.02
2.1627E−06
3.14
200
2.9683E−07
2.99
2.3362E−07
2.99
2.7882E−07
2.96
400
3.7399E−08
2.99
2.9457E−08
2.99
3.6196E−08
2.95
800
4.5990E−09
3.02
3.6169E−09
3.03
4.1885E−09
3.11
表1. 三阶方法的误差和精度阶
其中
u 0 ( x ) = { 1 6 ( G ( x , β , z − δ ) + G ( x , β , z + δ ) + 4 G ( x , β , δ ) ) , − 0.8 ≤ x ≤ − 0.6 1 , − 0.4 ≤ x ≤ − 0.2 1 − | 10 ( x − 0.1 ) | , 0 ≤ x ≤ 0.2 1 6 ( F ( x , α , a − Δ ) + F ( x , α , a + Δ ) + 4 F ( x , α , a ) ) , 0.4 ≤ x ≤ 0.6 0 , otherwise
这里,取 G ( x , β , z ) = e − β ( x − z ) 2 , F ( x , α , a ) = max ( 1 − α 2 ( x − a ) 2 , 0 ) 。参数取作 a = 0.5 , z = − 0.7 , δ = 0.005 , α = 10 , β = log 2 36 δ 2 。
基于带有100个单元的网格,将该算例计算至 t = 8 ,同时将数值结果展示于图1。我们从图中发现数值结果能够同精确解保持很好的一致性,且保持高分辨率。
4.3. Burgers方程
接下来,测试该方法针对强间断问题能否保持高分辨率,考虑一维Burgers方程:
u + ( u 2 2 ) x = 0
考虑初始条件
u ( x , 0 ) = 0.5 + sin ( π x ) , x ∈ [ 0 , 2 ]
该问题在 t = 1.5 / π 时刻会产生激波。接下来考虑另一种初始条件
u ( x , 0 ) = { − 0.5 , x ≤ 0.5 1 , x ≤ 1 0 , else x ∈ [ 0 , 1.5 ]
于海燕,王秀芳,李 刚. 基于微分变换策略的全离散间断Galerkin方法 High Order Discontinuous Galerkin Methods with Differential Transform Strategy[J]. 应用数学进展, 2018, 07(05): 574-583. https://doi.org/10.12677/AAM.2018.75068
参考文献References
Reed, W.H. and Hill, T.R. (1973) Trigangular Mesh Methods for the Neutron Transportation Equation. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory.
Cockburn, B. and Shu, C.-W. (1989) TVB Runge-Kutta Local Projection Discontinuous Galerkin Finite Element Method for Conservation Laws for Conservation Laws II: General Framework. Mathematics of Computation, 52, 411-435.
Cockburn, B., Lin, S.Y. and Shu, C.-W. (1989) TVB Runge-Kutta Local Projection Discontinuous Galerkin Finite Element Method for Conservation Laws for Conservation Laws III: One-Dimensional Systems. Journal of Com-putational Physics, 84, 90-113. https://doi.org/10.1016/0021-9991(89)90183-6
Cockburn, B., Hou, S. and Shu. C.-W. (1990) The TVB Runge-Kutta Local Projection Discontinuous Galerkin Finite Element Method for Conservation Laws for Conser-vation Laws IV: The Multidimensional Case. Mathematics of Computation, 54, 545-581.
Cockburn, B. and Shu, C.-W. (1998) The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V: Multidimensional Systems. Journal of Computational Physics, 141, 199-224. https://doi.org/10.1006/jcph.1998.5892
Aizinger, V. and Dawson, C. (2002) A Discontinuous Galerkin Method for Two-Dimensional Flow and Transport in Shallow Water. Advances in Water Resources, 25, 67-84. https://doi.org/10.1016/S0309-1708(01)00019-7
Nair, R.D., Thomas, S.J. and Loft, R.D. (2005) A Discontinuous Galerkin Global Shallow Water Model. Monthly Weather Review, 133, 876-888. https://doi.org/10.1175/MWR2903.1
Schwanenberg, D. and Harms, M. (2004) Discontinuous Galerkin Finite-Element Method for Transcritical Two-Dimensional Shallow Water Flow. Journal of Hydraulic Engineering, 130, 412-421. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:5(412)
Fagherazzi, S., Rasetarinera, P., Hussaini, Y.M. and Furbish, D.J. (2004) Numerical Solution of the Dam-Break Problem with a Discontinuous Galerkin Method. Journal of Hydraulic Engineering, 130, 532-539. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:6(532)
Eskilsson, C. and Sherwin, S.J. (2004) A Triangular Spec-tral/hp Discontinuous Galerkin Method for Modelling 2D Shallow Water Equations. International Journal for Numerical Methods in Fluids, 45, 605-623. https://doi.org/10.1002/fld.709
Aureli, F., Maranzoni, A., Mignosa, P. and Ziveri, C.A. (2008) Weighted Surface-Depth Gradient Method for the Numerical Integration of the 2D Shallow Water Equations with Topography. Advances in Water Resources, 31, 962-974. https://doi.org/10.1016/j.advwatres.2008.03.005
Ern, A., Piperno, S. and Djadel, K. (2008) A Well-Balanced Runge-Kutta Discontinuous Galerkin Method for the Shallow-Water Equations with Flooding and Drying. International Journal for Numerical Methods in Fluids, 58, 1-25. https://doi.org/10.1002/fld.1674
Canestrelli, A., Siviglia, A., Dumbser, M. and Toro, E.F. (2009) Well-Balanced High-Order Centred Schemes for Non-Conservative Hyperbolic Systems. Applications to Shallow Water Equations with Fixed and Mobile Bed. Advances in Water Resources, 32, 834-844. https://doi.org/10.1016/j.advwatres.2009.02.006
Xing, Y.L., Zhang, X.X. and Shu, C.-W. (2010) Positivity-Preserving High Order Well-Balanced Discontinuous Galerkin Methods for the Shallow Water Equations. Advances in Water Resources, 33, 1476-1493. https://doi.org/10.1016/j.advwatres.2010.08.005
Kesserwani, G., Liang, Q., Vazquez, J. and Mosé, R. (2010) Well-Balancing Issues Related to the RKDG2 Scheme for the Shallow Water Equations. International Journal for Numerical Methods in Fluids, 62, 428-448.
Benkhaldoun, F., Elmahi, I. and Sea, M. (2010) A New Finite Volume Method for Flux-Gradient and Source-Term Balancing in Shallow Water Equations. Computer Methods in Applied Mechanics and Engineering, 199, 3224-3335. https://doi.org/10.1016/j.cma.2010.07.003
Kesserwani, G. and Liang, Q.H. (2010) A Discontinuous Galerkin Algorithm for the Two-Dimensional Shallow Water Equations. Computer Methods in Applied Mechanics and Engineering, 199, 3356-3368. https://doi.org/10.1016/j.cma.2010.07.007
Cockburn, B., Karniadakis, G. and Shu, C.-W. (2000) The Development of Discontinuous Galerkin Methods. In: Cockburn, B., Karniadakis, G. and Shu, C.-W., Eds., Discontinuous Galerkin Methods: Theory, Computation and Applications, Lecture Notes in Computational Science and Engineering, Part I: Overview, Springer, Berlin, 3-50. https://doi.org/10.1007/978-3-642-59721-3_1
Shu, C.-W. (2016) High Order WENO and DG Methods for Time-Dependent Convection-Dominated PDEs: A Brief Survey of Several Recent Developments. Journal of Computational Physics, 316, 598-613. https://doi.org/10.1016/j.jcp.2016.04.030
Shu, C.-W. (2013) A Brief Survey on Discontinuous Galerkin Ethods in Com-putational Fluid Dynamics. Advances in Mechanics, 43, 541-554.
Toro, E.F., Millington, R.C. and Nejad, L.A.M. (2001) To-wards Very High Order Godunov Schemes. In: Toro, E.F., Ed., Godunov Methods. Theory and Applications, Edited Review, Kluwer Academic Publishers, Dordrecht, 907-940. https://doi.org/10.1007/978-1-4615-0663-8_87
Dumbse, M., Kaser, M., Titarev, V.A. and Toro, E.F. (2007) Quadra-ture-Free Non-Oscillatory Finite Volume Schemes on Unstructured Meshes for Nonlinear Hypobolic Systems. Journal of Computa-tional Physics, 226, 204-243. https://doi.org/10.1016/j.jcp.2007.04.004
Ayaz, F. (2004) Solutions of the System of Differential Equations by Differential Transform Method. Applied Mathematics and Computation, 147, 547-567. https://doi.org/10.1016/S0096-3003(02)00794-4
Norman, M.R. and Finkel, H. (2012) Multi-Moment ADER-Taylor Methods for Systems of Conservation Laws with Source Terms in One Dimension. Journal of Computational Physics, 231, 6622-6642. https://doi.org/10.1016/j.jcp.2012.05.029
Vukovic, S. and Sopta, L. (2002) ENO and WENO Schemes with the Exact Conservation Property for One-Dimensional Shallow Water Equations. Journal of Computational Physics, 179, 593-621. https://doi.org/10.1006/jcph.2002.7076