对于扩散方程的逆时问题与确定时间–空间依赖源项的反问题,提出一种基于变分伴随方法的数值反演算法。借助正问题的伴随问题,构建联系已知数据与未知量的变分恒等式,通过适当选择伴随方程的解进而得到关于未知量的线性方程组,结合正则化方法,获得了反问题的数值解。几个算例结果表明了这种方法的有效性。 A numerical inversion algorithm is proposed based on the variational adjoint method for solving the backward problem and inverse source problem in the diffusion equation. With the help of the adjoint problem, a variational identity connecting the known data with the unknown is derived with which a linear system for the unknown is set forth by suitably choosing the solution of the adjoint equation. Numerical solutions to the inverse problems are obtained by solving the linear system with Tikhonov regularization, and numerical examples are presented to demonstrate the effectiveness of the inversion algorithm.
王桢东,李功胜,王迎美. 基于变分伴随的扩散方程系数反问题的数值反演算法 An Inversion Algorithm for Inverse Coefficient Problems in the Diffusion Equation Based on Variational Adjoint Method[J]. 应用数学进展, 2018, 07(04): 466-475. https://doi.org/10.12677/AAM.2018.74057
参考文献References
Cheng, J. and Yamamoto, M. (2000) The Global Uniqueness for Determining Two Convection Coefficients from Dirichlet to Neumann Map in Two Dimensions. Inverse Problems, 16, L25-L30. https://doi.org/10.1088/0266-5611/16/3/101
DuChateau, P. (2013) An Adjoint Method for Proving Identifiability of Coefficients in Parabolic Equations. Journal of Inverse and Ill-Posed Problems, 21, 639-663. https://doi.org/10.1515/jip-2013-0010
Isakov, V. (1998) Inverse Problems for Partial Differential Equations. Springer, New York. https://doi.org/10.1007/978-1-4899-0030-2
Yamamoto, M. (2009) Carleman Estimates for Parabolic Equations and Applications. Inverse Problems, 25, 123013. https://doi.org/10.1088/0266-5611/25/12/123013
Tikhonov, A.N., Goncharsky, A.V., Stepanov, V.V. and Yagola, A. (1995) Numerical Methods for the Solution of Ill-Posed Problems. Kluwer, Dordrecht. https://doi.org/10.1007/978-94-015-8480-7
Engl, H.W., Hanke, M. and Neubauer, A. (1996) Regularization of Inverse Problems. Kluwer Academic, Dordrecht. https://doi.org/10.1007/978-94-009-1740-8
刘继军. 不适定问题的正则化方法及应用[M]. 北京: 科学出版社, 2005.
王彦飞. 反演问题的计算方法及其应用[M]. 北京: 高等教育出版社, 2007.
韩波, 李莉. 非线性不适定问题的求解方法及其应用[M]. 北京: 科学出版社, 2011.
Cannon, J.R. (1984) The One Dimensional Heat Equation. Addison-Wesley, London.
Beck, J.V., Blackwell, B. and St. Clair, C.R. (1985) Inverse Heat Conduction: Ill-Posed Problems. Wiley-Interscience, New York.
Liu, C.-S. and Wang, P.F. (2016) An Analytic Adjoint Trefftz Method for Solving the Singular Parabolic Convection-Diffusion Equation and Initial Pollution Profile Problem. International Journal of Heat and Mass Transfer, 101, 1177-1184. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.134
Liu, C.-S. (2016) A Simple Trefftz Method for Solving the Cauchy Problems of Three-Dimensional Helmholtz Equation. Engineering Analysis with Boundary Elements, 63, 105-113. https://doi.org/10.1016/j.enganabound.2015.11.009
Liu, C.-S, Qu, W.Z. and Zhang, Y.M. (2018) Numerically Solving Twofold Ill-Posed Inverse Problems of Heat Equation by the Adjoint Trefftz Method. Numerical Heat Transfer: Part B, 73, 48-61. https://doi.org/10.1080/10407790.2017.1420317