弦是指连接圈上的两个点构成的一条边,使得这条边不属于圈上。如果一个圈至少有一条弦,那么我们称这个圈为弦圈。本文给出了二部图中过含特定点集点不交弦圈的最小度条件。 A chord is an edge between two vertices of a cycle that is not an edge on the cycle. If a cycle has at least one chord, then the cycle is called a chorded cycle. The minimum degree condition is given for a bipartite graph to contain vertex-disjoint chorded cycles containing specified vertices.
蔺逍遥,高云澍 . 二部图中过特定点的点不交弦圈 Vertex-Disjoint Chorded Cycles through Specified Vertices in Bipartite Graphs[J]. 应用数学进展, 2018, 07(04): 413-417. https://doi.org/10.12677/AAM.2018.74051
参考文献References
Bondy, J.A. and Murty, U.S.R. (1976) Graph Theory with Applications. Elsevier, New York. https://doi.org/10.1007/978-1-349-03521-2
Dirac, G.A. (1952) Some Theorems on Abstract Graphs. Proceedings of the London Mathematical Society, 2, 69-81. https://doi.org/10.1112/plms/s3-2.1.69
Moon, J.W. and Moser, L. (1963) On Hamiltonian Bipartite Graphs. Israel Journal of Mathematics, 1, 163-165. https://doi.org/10.1007/BF02759704
Entringer, R.C. and Schmeichel, E.F. (1988) Edge Conditions and Cycle Structure in Bipancyclic Graphs. Ars Combinatoria, 26, 229-232.
Schmeichel, E.F. and Mitchem, J. (1982) Bipartite Graphs with Cycles of All Even Lengths. Journal of Graph Theory, 6, 429-439. https://doi.org/10.1002/jgt.3190060407
Li, H. (2013) Generalizations of Dirac’s Theorem in Hamiltonian Graph Theory—A Survey. Discrete Mathematics, 313, 2034-2053. https://doi.org/10.1016/j.disc.2012.11.025
Cream, M., Faudree, R., Gould, R. and Hirohata, K. (2016) Chorded Cycles. Graphs and Combinatorics, 32, 2296-2313. https://doi.org/10.1007/s00373-016-1729-4