目的:比较5种人工晶体(Intraocular lens, IOL)计算公式(Haigis、SRK II、HofferQ、Holladay1以及 SRK/T)在预测正常眼轴合并浅前房白内障患者术后屈光度的准确性,探讨适合此类患者的IOL计算公式。方法:回顾性系列病例研究。纳入2016年1月至2017年10月于青岛大学附属医院眼科就诊的正常眼轴长度(Axial length, AL)合并浅前房白内障患者共45例(45眼)。使用IOL Master计算不同公式的预测术后屈光度数,术后3至8周验光确定患者实际术后屈光度数,计算屈光误差、绝对屈光误差。应用 SPSS19.0进行统计学分析,比较对不同IOL计算公式的屈光误差、绝对屈光误差及屈光误差分布。结果:Haigis公式的平均屈光误差(−0.13 ± 0.76 D)最小,与Hoffer Q (−0.34 ± 0.74 D,P < 0.01)、Holladay1 (−0.33 ± 0.73 D, P < 0.01)以及SRK/T(−0.31 ± 0.72 D,P < 0.01)公式比较,差异具有统计学意义。Haigis、SRK II、HofferQ、Holladayl以及SRK/T公式的平均绝对屈光误差分别为0.58 ± 0.50 D, 0.62 ± 0.50 D, 0.62 ± 0.51 D,0.61 ± 0.51 D及0.58 ± 0.53 D,差异无统计学意义(χ2= 4.027, P = 0.402)。不同IOL计算公式的屈光误差分布差异无统计学意义(χ2= 3.782, P = 0.872)。结论:Haigis公式在正常眼轴合并浅前房白内障患者术后屈光度预测中的准确性高,选择Haigis公式在将有助于减少屈光误差。 Objective: To compare the accuracy of five intraocular lens calculation formulas (Haigis, SRK II, Hoffer Q, Holladay1 and SRK/T) in shallow anterior chamber patients with normal axial length. Methods: 45 patients who underwent uncomplicated cataract surgery were involved in this ret-rospective analysis. This study was performed in the Department of Ophthalmology at the Affiliated Hospital of Qingdao University from January 2016 to October 2017. The IOL Master was used to predict the refractive outcomes for five formulas. Actual postoperative refractions were taken on 3 to 8 weeks after surgery. Refractive error and absolute refractive error were calculated. The SPSS19.0 was used for statistical analysis to compare the refractive errors, absolute refractive er-rors and the refractive error distribution of different IOL formulas. Results: The mean refractive error of the Haigis formula (–0.13 ± 0.76 D) differed significantly from Hoffer Q (–0.34 ± 0.74 D, P < 0.01), Holladay1 (–0.33 ± 0.73 D, P < 0.01) and SRK/T (–0.31 ± 0.72 D, P < 0.01) formulas. The mean absolute refractive error were 0.58 ± 0.50 D,0.62 ± 0.50 D, 0.62 ± 0.51 D, 0.61 ± 0.51 D and 0.58 ± 0.53 D with Haigis, SRK II, HofferQ, Holladay1, and SRK/T formulas, respectively, and there was no significant differences among them (χ2= 4.027, P = 0.402). There was no significant difference in the distribution of refractive error between different IOL formulas (χ2= 3.782, P = 0.872). Conclusion: The Haigis formula can predict refraction in shallow anterior chamber patients with normal axial length with less error.
邴丽英,刘桂波,马玉娜,冷 林. 人工晶体计算公式在正常眼轴合并浅前房白内障患者中的准确性比较 Accuracy of Various Intraocular Lens Calculation Formulas in Shallow Anterior Chamber Patients with Normal Axial Length[J]. 临床医学进展, 2018, 08(02): 210-216. https://doi.org/10.12677/ACM.2018.82036
参考文献References
俞阿勇. 屈光性白内障手术的若干挑战[J]. 中华眼视光学与视觉科学杂志, 2017, 19(2): 65-70.
Kim, S.M., Choi, J. and Choi, S. (2009) Refractive Predictability of Partial Coherence Interferometry and Factors That Can Affect It. Korean Journal of Ophthalmology, 23, 6-12. https://doi.org/10.3341/kjo.2009.23.1.6
汤欣, 于莎莎. 重视和优选白内障术前生物学测量与人工晶状体屈光度计算的联合方案[J]. 中华实验眼科杂志, 2015, 33(4): 289-293.
Eleftheriadis, H. (2003) IOL Master Biometry: Refractive Results of 100 Consecutive Cases. British Journal of Ophthalmology, 87, 960-963. https://doi.org/10.1136/bjo.87.8.960
Aristodemou, P., Knox Cart-wright, N.E., Sparrow, J.M. and Johnston, R.L. (2011) Formula Choice: Hoffer Q, Holladay 1, or SRK/T and Refractive Outcomes in 8108 Eyes after Cataract Surgery with Biometry by Partial Coherence Interferometry. Journal of Cataract and Refractive Surgery, 37, 63-71. https://doi.org/10.1016/j.jcrs.2010.07.032
Narváez, J., Zimmerman, G., Stulting, R.D. and Chang, D.H. (2006) Accuracy of Intraocular Lens Power Prediction Using the Hoffer Q, Holladay 1, Holladay 2, and SRK/T Formulas. Journal of Cataract and Refractive Surgery, 32, 2050-2053. https://doi.org/10.1016/j.jcrs.2006.09.009
Eom,Y., Kang, S.Y., Song, J.S., Kim, Y.Y. and Kim, H.M. (2014) Comparison of Hoffer Q and Haigis Formulae for Intraocular Lens Power Calculation According to the Anterior Chamber Depth in Short Eyes. American Journal of Ophthalmology, 157, 818-824. https://doi.org/10.1016/j.ajo.2013.12.017
Connors III, R., Boseman III, P. and Olson, R.J. (2002) Accuracy and Reproducibility of Biometry Using Partial Coherence Interferometry. Journal of Cataract and Refractive Surgery, 28, 235-238. https://doi.org/10.1016/S0886-3350(01)01179-8
Olsen, T. and Thorwest, M. (2005) Calibration of Axial Length Measurements with the Zeiss IOLMaster. Journal of Cataract and Refractive Surgery, 31, 1345-1350. https://doi.org/10.1016/j.jcrs.2004.12.066
Kang, S.Y., Hong, S., Won J.B., Gong, J.S. and Chan, Y.K. (2009) Inaccuracy of Intraocular Lens Power Prediction for Cataract Surgery in Angle-Closure Glaucoma. Yonsei Medical Journal, 50, 206-210. https://doi.org/10.3349/ymj.2009.50.2.206
Miraftab, M., Hashemi, H., Fotouhi, A., Khabazkhoob, M., Rezvan, F. and Asgari, S. (2014) Effect of Anterior Chamber Depth on the Choice of Intraocular Lens Calculation Formula in Patients with Normal Axial Length. Middle East African Journal of Ophthalmology, 21, 307-311.
Hoffer, K.J. (1993) The Hoffer Q Formula: A Comparison of Theoretic and Regression Formulas. Journal of Cataract and Refractive Surgery, 19, 700-712. https://doi.org/10.1016/S0886-3350(13)80338-0
Holladay, J.T., Prager, T.C., Chandler, T.Y., Musgrove, K.H., Lewis, J.W. and Ruiz, R.S. (1988) A Three-Part System for Refining Intraocular Lens Power Calculations. Journal of Cataract & Refractive Surgery, 14, 17-24. https://doi.org/10.1016/S0886-3350(88)80059-2
Retzlaff, J.A., Sanders, D.R. and Kraff, M.C. (1990) De-velopment of the SRK/T Intraocular Lens Implant Power Calculation Formula. Journal of Cataract and Refractive Surgery, 16, 333-340. https://doi.org/10.1016/S0886-3350(13)80705-5
Olsen, T. (2007) Calculation of Intraocular Lens Power: A Review. Acta Ophthalmologica Scandinavica, 85, 472-485. https://doi.org/10.1111/j.1755-3768.2007.00879.x
Haigis, W., Lege, B., Miller, N. and Schneider, B. (2000) Comparison of Immersion Ultrasound Biometry and Partial Coherence Interferometry for Intraocular Lens Calculation According to Haigis. Graefe’s Archive for Clinical and Experimental Ophthalmology, 238, 765-773. https://doi.org/10.1007/s004170000188
Sanders, D.R., Retzlaff, J. and Kraff, M.C. (1998) Comparison of the SRK II Formula and Other Second Generation Formulas. Journal of Cataract and Refractive Surgery, 14, 136-141. https://doi.org/10.1016/S0886-3350(88)80087-7
Kim, Y.C., Sung, M.S., Heo, H. and Park, SW. (2016) An-terior Segment Configuration as a Predictive Factor for Refractive Outcome after Cataract Surgery in Patients with Glaucoma.BMC Ophthalmology, 16, 179-187. https://doi.org/10.1186/s12886-016-0359-1
Joo, J., Whang, W.J., Oh, T.H., Kang, K.D., Kim, H.S. and Moon, J.I. (2011) Accuracy of Intraocular Lens Power Calculation Formulas in Primary Angle Closure Glaucoma. Korean Journal of Ophthalmology, 25, 375-379. https://doi.org/10.3341/kjo.2011.25.6.375
杨斐, 侯宪如, 吴慧娟, 鲍永珍. 年龄相关性白内障合并浅前房患者白内障术后屈光状态研究[J]. 中华眼科杂志, 2014, 50(2): 84-88.
董丽华, 孙红艳, 朱江, 赵娜娜, 等. 年龄相关性白内障并发浅前房患者手术治疗后的屈光状况分析[J]. 国际眼科杂志, 2015, 15(6): 1083-1085.