对于一个简单图G,变换图G+−−定义为 ,且两个顶点 相邻当且仅当满足下列三个条件:1) 并且 ,2) 并且 在G 中不相邻,3) x和y,其中一个在 中,另一个在 中,并且它们在G中关联。在这篇文章里,我们将证明G+−−是平面的当且仅当 或者与下列的某个图同构:C3,C3+ K1,P4,P4+ K1,P3+ K2,P3+ K2+ K1,K1,3,K1,3+ K1,3K2,3K2+ K1,3K2+ 2K1,C4,C4+ K1,2P3。 Let G be a simple graph. The transformation graph of G is the graph with vertex set in which the vertex x and y are joined by an edge if and only if the following condi-tion holds: 1) and x and y are adjacent in G, 2) , and x and y are not adjacent in G, 3) one of x and y is in V(G) and the other is in E(G), and they are not incident in G. In this paper, it is shown that G+−−is planar if and only if or G is isomorphic to one of the following graphs: C3, C3+ K1, P4, P4+ K1, P3+ K2, P3+ K2+ K1, K1,3, K1,3+ K1, 3K2, 3K2+ K1, 3K2+ 2K1, C4, C4+ K1, 2P3.
全图,平面性,变换图, Total Graph
Planarity
Transformation Graph
G + − − 的平面性
王丹1,刘晓平2
1新疆大学,数学与系统科学学院,新疆 乌鲁木齐
2新疆工程学院,新疆 乌鲁木齐
收稿日期:2018年2月22日;录用日期:2018年3月5日;发布日期:2018年3月13日
摘 要
对于一个简单图G,变换图G+−−定义为 V ( G + − − ) = V ( G ) ∪ E ( G ) ,且两个顶点 x , y ∈ V ( G + − − ) 相邻当且仅当满足下列三个条件:1) x , y ∈ V ( G ) 并且 x , y ∈ E ( G ) ,2) x , y ∈ E ( G ) 并且 x , y 在G 中不相邻,3) x和y,其中一个在 V ( G ) 中,另一个在 E ( G ) 中,并且它们在G中关联。在这篇文章里,我们将证明G+−−是平面的当且仅当 | E ( G ) | ≤ 2 或者与下列的某个图同构:C3,C3+ K1,P4,P4+ K1,P3+ K2,P3+ K2+ K1,K1,3,K1,3+ K1,3K2,3K2+ K1,3K2+ 2K1,C4,C4+ K1,2P3。
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/
1. 引言
这篇文章里所有的图都是有限的,简单的,无向的。在 [
1
] 中可以找到没有被定义的术语和符号。图 G = ( V ( G ) ∪ E ( G ) ) , | V ( G ) | 是G的顶点的个数, | E ( G ) | 是G的边的个数,v的邻集NG(v)是G中所有与v相邻的顶点的集合。因为G是简单图,所以有 | N G ( v ) | = d G ( v ) 。
假设V'是V(G)的一个非空子集。图G的导出子图 G [ V ′ ] 定义为 V ( G [ V ′ ] ) = V ′ 并且 u v ∈ E ( G [ V ′ ] ) 当且仅当 u v ∈ E ( G ) 。两个图 G = ( V ( G ) , E ( G ) ) , H = ( V ( H ) , E ( H ) ) 的并,记为 G ∪ H ,点集是 V ( G ) ∪ V ( H ) ,边集是 E ( G ) ∪ E ( H ) 。如果它们不交,即 V ( G ) ∩ V ( H ) = ∅ ,它们的并记为G + H。
图G的线图L(G)的点集是E(G),其两个顶点相邻当且仅当它们在G中相邻。图G的全图G+++,它的点集是 V ( G ) ∪ E ( G ) ,任意两点相邻当且仅当它们在G中或者是相邻的,或者是关联的。吴和孟 [
2
] 推广了全图的概念,并且引入了一些新的变换图。我们也采用了Gxyz这个符号, x , y , z ∈ { + , − } ,这个符号是在 [
2
] 中被引入的。
[
1
] 1Bondy, J.A. and Murty, U.S.R. (1976) Graph Theory with Applications. Macmillan, London. https://doi.org/10.1007/978-1-349-03521-2
[
2
] Wu, B. and Meng, J. (2001) Basic Properties of Total Transformation Graphs. Journal of Mathematical Study, 34, 109-116.
[
3
] Behzad, M. (1967) A Criterion for the Planarity of the Total Graph of a Graph. Mathematical Proceedings of the Cambridge Philosophical Society, 63, 679-681. https://doi.org/10.1017/S0305004100041657
[
4
] Liu, X. (2006) On the Planarity of G−−−. Journal of Xinjiang University (Science & Engineering), 23, 159-161.
[
5
] Wu, B., Zhang, L. and Zhang, Z. (2005) The Trnasformation Graph GxyzWhen x, y, z Î {+, −}. Discrete Mathematics, 296, 263-270. https://doi.org/10.1016/j.disc.2005.04.002
[
6
] Chen, J., Huang, L. and Zhou, J. (2012) Super Connectivity and Super Edge-Connectivity of Transformation Graphs G+−+. Ars Combinatoria, 105, 103-115.
[
7
] Deng, A. and Kelmans, A. (2017) Laplacian Spectra of Digraph Transformations. Linear and Multilinear Algebra, 65, 699-730. https://doi.org/10.1080/03081087.2016.1202183
[
8
] Deng, A., Feng, M. and Kelmans, A. (2016) Adjacency Polynomials of Digraph Transformations. Discrete Applied Mathematics, 206, 15-38. https://doi.org/10.1016/j.dam.2016.01.032
[
9
] Deng, A., Kelmans, A. and Meng, J. (2013) Laplacian Spectra of Regular Graph Transformations. Discrete Applied Mathematics, 161, 118-133. https://doi.org/10.1016/j.dam.2012.08.020
[
10
] Li, J. and Liu, J. (2014) Some Basic Properties of a Class of Total Transformation Digraphs. Ars Combinatoria, 116, 205-211.
[
11
] Xu, L. and Wu, B. (2008) Transformation Graph G−+−. Discrete Mathematics, 308, 5144-5148. https://doi.org/10.1016/j.disc.2007.09.040
[
12
] Yi, L. and Wu, B. (2009) The Transformation Graph G++−. Australasian Journal of Combinatorics, 44, 37-42.
[
13
] Zhen, L. and Wu, B. (2013) Hamiltonicity of Transformation Graph G+−−. Ars Combinatoria, 108, 117-127.
References
1Bondy, J.A. and Murty, U.S.R. (1976) Graph Theory with Applications. Macmillan, London. https://doi.org/10.1007/978-1-349-03521-2
Wu, B. and Meng, J. (2001) Basic Properties of Total Trans-formation Graphs. Journal of Mathematical Study, 34, 109-116.
Behzad, M. (1967) A Criterion for the Planarity of the Total Graph of a Graph. Mathematical Proceedings of the Cambridge Philosophical Society, 63, 679-681. https://doi.org/10.1017/S0305004100041657
Liu, X. (2006) On the Planarity of G−−−. Journal of Xinjiang University (Science & Engineering), 23, 159-161.
Wu, B., Zhang, L. and Zhang, Z. (2005) The Trnasformation Graph Gxyz When x, y, z {+, −}. Discrete Mathematics, 296, 263-270. https://doi.org/10.1016/j.disc.2005.04.002
Chen, J., Huang, L. and Zhou, J. (2012) Super Connectivity and Super Edge-Connectivity of Transformation Graphs G+−+. Ars Combinatoria, 105, 103-115.
Deng, A. and Kelmans, A. (2017) Laplacian Spectra of Digraph Transformations. Linear and Multilinear Algebra, 65, 699-730. https://doi.org/10.1080/03081087.2016.1202183
Deng, A., Feng, M. and Kelmans, A. (2016) Adjacency Polynomials of Digraph Transformations. Discrete Applied Mathematics, 206, 15-38. https://doi.org/10.1016/j.dam.2016.01.032
Deng, A., Kelmans, A. and Meng, J. (2013) Laplacian Spectra of Regular Graph Transformations. Discrete Applied Mathematics, 161, 118-133. https://doi.org/10.1016/j.dam.2012.08.020
Li, J. and Liu, J. (2014) Some Basic Properties of a Class of Total Transformation Digraphs. Ars Combinatoria, 116, 205-211.
Xu, L. and Wu, B. (2008) Transformation Graph G−+−. Discrete Mathematics, 308, 5144-5148. https://doi.org/10.1016/j.disc.2007.09.040
Yi, L. and Wu, B. (2009) The Transformation Graph G++−. Aus-tralasian Journal of Combinatorics, 44, 37-42.
Zhen, L. and Wu, B. (2013) Hamiltonicity of Transformation Graph G+−−. Ars Combinatoria, 108, 117-127.