WNT/β-catenin信号通路是一组进化性保守的信号,其在多种物种的胚胎发育以及再生中都发挥着重要的作用。本文综述了最近对WNT/β-catenin信号通路在多种脊椎动物器官损伤中作用的理解。在斑马鱼的视网膜和侧线再生,两栖动物的附肢再生以及小鼠中视网膜、生长板和前列腺再生中,此信号通路都发挥着至关重要的作用。 The WNT/β-catenin pathway is a set of evolutionarily conserved signals which play a vital role during embryonic development and regeneration of varied species. This paper reviews the recent understanding of the role of WNT/β-catenin pathway in various vertebrates’ injured organs. The WNT/β-catenin pathway is essential in the regeneration of retina and lateral line in zebrafish, limb regeneration in amphibian and regeneration of retina, growth plate cartilage and prostate in rat.
WNT/β-catenin信号通路,再生,斑马鱼,小鼠, WNT/β-Catenin Pathway
Regeneration
Zebrafish
Rat
WNT/β-Catenin信号通路在再生中的研究进展
谢成浩,梁宇君. WNT/β-Catenin信号通路在再生中的研究进展The Progress of Research on the WNT/β-Catenin Pathway in Regeneration[J]. 海洋科学前沿, 2017, 04(04): 111-117. http://dx.doi.org/10.12677/AMS.2017.44016
参考文献 (References)References
Holstein, T.W. (2012) The Evolution of the Wnt Pathway. Cold Spring Harbor Perspectives in Biology, 4, Article ID: a007922. https://doi.org/10.1101/cshperspect.a007922
Gurley, K.A., Elliott, S.A., Simakov, O., Schmidt, H.A., Holstein,T.W., and S´anchez Alvarado, A. (2010) Expression of secreted Wnt Pathway Components Reveals Unexpected Complexity of the Planarian Amputation Response. Developmental Biology, 347, 24-39. https://doi.org/10.1016/j.ydbio.2010.08.007
Broun, M., Gee, L., Reinhardt, B., and Bode, H.R. (2005) Formation of the Head Organizer in Hydra Involves the Canonical Wnt Pathway. Development, 132, 2907-2916. https://doi.org/10.1242/dev.01848
Yokoyama, H., Ogino, H., Stoick-Cooper, C.L., Grainger, R.M., and Moon, R.T. (2007) Wnt/Beta-Catenin Signaling Has an Essential Role in the Initiation of Limb Regeneration. Developmental Biology, 306, 170-178. https://doi.org/10.1016/j.ydbio.2007.03.014
Fevr, T., Robine, S., Louvard, D., and Huelsken, J. (2007) Wnt/Beta-Cateninis Essential for Intestinal Homeostasis and Maintenance of Intestinal Stem Cells. Molecular and Cellular Biology, 27, 7551-7559. https://doi.org/10.1128/MCB.01034-07
Aisagbonhi, O., Rai, M., Ryzhov, S., Atria, N., Feoktistov, I., and Hatzopoulos, A.K. (2011) Experimental Myocardial Infarction Triggers Canonical Wnt Signaling and Endothelial-To-Mesenchymal Transition. Disease Models & Mechanisms, 4, 469-483.
Zhang, Z., Deb, A., Zhang, Z., Pachori, A., He, W., Guo, J., Pratt, R., and Dzau, V.J. (2009) Secreted Frizzled Related Protein 2 Protects Cells from Apoptosis by Blocking the Effect of Canonical Wnt3a. Journal of Molecular and Cellular Cardiology, 46, 370-377. https://doi.org/10.1016/j.yjmcc.2008.11.016
Nusse, R. (2005) Wnt Signaling in Disease and in Development. Cell Research, 15, 28-32.
Johns, P.R. (1977) Growth of the Adult Goldfish Eye. III. Source of the New Retinal Cells. Journal of Comparative Neurology, 176, 343-357. https://doi.org/10.1002/cne.901760304
Bernardos, R.L., Barthel, L.K., Meyers, J.R. and Raymond, P.A. (2007) Late-Stage Neuronal Progenitors in the Retina Are Radial Müller Glia that Function as Retinal Stem Cells. Journal of Neuroscience, 27, 7028-7040. https://doi.org/10.1523/JNEUROSCI.1624-07.2007
Wend, P., Holland, J.D., Ziebold, U. and Birchmeier, W. (2010) Wnt Signaling in Stem and Cancer Stem Cells. Seminars in Cell and Developmental Biology, 21, 855-863. https://doi.org/10.1016/j.semcdb.2010.09.004
Kubo, F., Takeichi, M. and Nakagawa, S. (2003) Wnt2b Controls Retinal Cell Differentiation at the Ciliary Marginal Zone. Development, 130, 587-598. https://doi.org/10.1242/dev.00244
Osakada, F., Ooto, S., Akagi, T., Mandai, M., Akaike, A. and Takahashi, M. (2007) Wnt Signaling Promotes Regeneration in the Retina of Adult Mammals. Journal of Neuroscience, 27, 4210-4219. https://doi.org/10.1523/JNEUROSCI.4193-06.2007
Heisenberg, C.P., Brand, M., Jiang, Y.J., Warga, R.M., Beuchle, D., van Eeden, F.J., Furutani-Seiki, M., Granato, M., Haffter, P., Hammerschmidt, M., Kane, D.A., Kelsh, R.N., Mullins, M.C., Odenthal, J. and Nusslein-Volhard, C. (1996) Genes Involved in Forebrain Development in the Zebrafish, Danio rerio. Development, 123, 191-203.
Tsonis, P.A. (2000) Regeneration in Vertebrates. Developmental Biology, 221, 273-284. https://doi.org/10.1006/dbio.2000.9667
Dent, J.N. (1962) Limb Regeneration in Larvae and Metamorphosing Individuals of the South African Clawed Toad. Journal of Morphology, 110, 61-77. https://doi.org/10.1002/jmor.1051100105
Suzuki, M., Yakushiji, N., Nakada, Y., Satoh, A., Ide, H., et al. (2006) Limbregeneration in Xenopus laevis Froglet. Scientific World Journal, 6, 26-37. https://doi.org/10.1100/tsw.2006.325
Stocum, D.L. (1995) Tissue Interactions in Limb Regeneration. In: Stocum, D.L., Ed., Wound Repair, Regeneration and Artificial Tissues, R. G. Landes, Austin, 99-126.
Singer, M. (1952) The Influence of the Nerve in Regeneration of the Amphibianextremity. The Quarterly Review of Biology, 27, 169-200. https://doi.org/10.1086/398873
Beck, C.W., Christen, B., Barker, D. and Slack, J.M. (2006) Temporal Requirement for Bone Morphogenetic Proteins in Regeneration of the Tail and Limb of Xenopustadpoles. Mechanisms of Development, 123, 674-688. https://doi.org/10.1016/j.mod.2006.07.001
Satoh, A., Endo, T., Abe, M., Yakushiji, N., Ohgo, S., et al. (2006) Characte-rization of Xenopus Digits and Regenerated Limbs of the Froglet. Developmental Dynamics, 235, 3316-3326. https://doi.org/10.1002/dvdy.20985
Groves, A.K. and Fekete, D.M. (2012) Shaping Sound in Space: The Regulation of Inner Ear Patterning. Development, 139, 245-257. https://doi.org/10.1242/dev.067074
Jayasena, C.S., Ohyama, T., Segil, N. and Groves, A.K. (2008) Notchsignaling Augments the Canonical Wnt Pathway to Specifythe Size of the Otic Placode. Development, 135, 2251-2261. https://doi.org/10.1242/dev.017905
Kwon, C., Cheng, P., King, I.N., Andersen, P., Shenje, L., Nigam, V. and Srivastava, D. (2011) Notch Post-Translationally Regulatesbeta-Catenin Protein in Stem and Progenitor Cells. Nature Cell Biology, 13, 1244-1251. https://doi.org/10.1038/ncb2313
Sienknecht, U.J. and Fekete, D.M. (2008) Comprehensive Wnt Related Gene Expression during Cochlear Duct Development in Chicken. Journal of Comparative Neurology, 510, 378-395. https://doi.org/10.1002/cne.21791
Shimizu, N., Kawakami, K. and Ishitani, T. (2012) Visualization and Exploration of Tcf/Lef Function using a Highly Responsive Wnt/Beta-Catenin Signaling-Reporter Transgenic Zebrafish. Developmental Biology, 370, 71-85. https://doi.org/10.1016/j.ydbio.2012.07.016
Chai, R., Kuo, B., Wang, T., Liaw, E.J., Xia, A., et al. (2012) Wnt Signaling Induces Proliferation of Sensory Precursors in the Postnatal Mouse Cochlea. Proceedings of the National Academy of Sciences, 109, 8167-8172. https://doi.org/10.1073/pnas.1202774109
Xian, C.J. (2007) Roles of Epidermal Growth Factor Family in the Regulation of Postnatal Somatic Growth. Endocrine Reviews, 28, 284-296. https://doi.org/10.1210/er.2006-0049
Xian, C.J., Zhou, F.H., McCarty, R.C. and Foster, B.K. (2004) Intramembranous Ossification Mechanismfor Bone Bridge Formation at the Growth Plate Cartilage Injury Site. Journal of Orthopaedic Research, 22, 417-426. https://doi.org/10.1016/j.orthres.2003.08.003
Macsai, C.E., Georgiou, K.R., Foster, B.K., Zannettino, A.C. and Xian, C.J. (2012) Microarray Expression Analysis of Genes and Pathways Involved in Growth Plate Cartilage Injury Responses and Bony Repair. Bone, 50, 1081-1091. https://doi.org/10.1016/j.bone.2012.02.013
Chen, Y., Whetstone, H.C., Lin, A.C., Nadesan, P., Wei, Q., Poon, R., et al. (2007) Beta-Catenin Signaling Plays a Disparate Role in Different Phases of Fracture Repair: Implications for Therapy to Improve Bone Healing. PLOS Medicine, 4, e249. https://doi.org/10.1371/journal.pmed.0040249
Chung, R., Wong, D., Macsai, C., et al. (2013) Roles of Wnt/β-Catenin Signalling Pathway in the Bony Repair of Injured Growth Plate Cartilage in Young Rats. Bone, 52, 651-658. https://doi.org/10.1016/j.bone.2012.10.035
Staack, A., Donjacour, A.A., Brody, J., et al. (2003) Mouse Urogenital Development: A Practical Approach. Differentiation, 71, 402-413. https://doi.org/10.1046/j.1432-0436.2003.7107004.x
Cunha, G.R., Donjacour, A.A., Cooke, P.S., et al. (1987) The Endo-crinology and Developmental Biology of the Prostate. Endocrine Reviews, 8, 338-362. https://doi.org/10.1210/edrv-8-3-338
Cunha, G.R., Donjacour, A.A. and Sugimara, Y. (1986) Stromal-Epithelial Interac-tions and Heterogeneity of Proliferative Activity within the Prostate. Biochemistry and Cell Biology, 64, 608-614. https://doi.org/10.1139/o86-084
Choi, N., Zhang, B., Zhang, L., et al. (2012) Adult Murine Prostate Basal and Luminal Cells Are Self-Sustained Lineages That Can Both Serve as Targets for Prostate Cancer Initiation. Cancer Cell, 21, 253-265. https://doi.org/10.1016/j.ccr.2012.01.005
Blum, R., Gupta, R., Burger, P.E., et al. (2010) Molecular Signatures of the Primitive Prostate Stem Cell Niche Reveal Novel Mesenchymal-Epithelial Signaling Pathways. PLoS ONE, 5, e13024.
Simons, B.W., Hurley, P.J., Huang, Z., et al. (2012) Wnt Signaling Though Beta-Catenin Is Required for Prostate Lineage Specification. De-velopmental Biology, 371, 246-255. https://doi.org/10.1016/j.ydbio.2012.08.016
Yan, D., Wiesmann, M., Rohan, M., et al. (2001) Elevated Expression of axin2 and hnkd mRNA Provides Evidence That Wnt/Beta-Catenin Signaling Is Activated in Human Colon Tumors. Proceedings of the National Academy of Sciences, 98, 14973-14978. https://doi.org/10.1073/pnas.261574498
Bowman, A.N., van Amerongen, R., Palmer, T.D., et al. (2013) Lineage Tracing with Axin2 Reveals Distinct Developmental and Adult Populations of Wnt/Beta-Catenin-Responsive Neural Stem Cells. Proceedings of the National Academy of Sciences, 110, 7324-7329. https://doi.org/10.1073/pnas.1305411110
Leea, S.H., Johnsona, D.T., et al. (2015) Wnt/β-Catenin-Responsive Cells in Prostatic Development and Regeneration. Stem Cells, 33, 3356-3367. https://doi.org/10.1002/stem.2096
Lluis, F., Pedone, E., Pepe, S. and Cosma, M.P. (2010) The Wnt/b-Catenin Signaling Pathway Tips the Balance between Apoptosis and Re-Programming of Cell Fusion Hybrids. Stem Cells, 28, 1940-1949. https://doi.org/10.1002/stem.515
Terada, N., Hamazaki, T., Oka, M., Hoki, M., Mastalerz, D.M., Nakano, Y., Meyer, E.M., Morel, L., Petersen, B.E. and Scott, E.W. (2002) Bone Marrow Cells Adopt the Phenotype of Other Cells by Spontaneous Cell Fusion. Nature, 416, 542-545. https://doi.org/10.1038/nature730
Sanges, D., Romo, N., et al. (2013) Wnt/b-Catenin Signaling Triggers Neuron Reprogramming and Regeneration in the Mouse Retina. Cell Reports, 4, 271-286. https://doi.org/10.1016/j.celrep.2013.06.015