为了解中国主要沙漠地表沉积物之间的关系,分别在毛乌素沙地、库布其沙漠、乌兰布和沙漠、腾格里沙漠、巴丹吉林沙漠、塔克拉玛干沙漠和柴达木沙漠取样,分析了7种常量元素(Na、K、Ca、Mg、Al、Fe、Si)含量。分析结果表明:七大沙漠(沙地)地表沉积物的Mg和Ca含量有较大差异;其地表物质都处于风化初级的脱Ca、Na阶段。按风化程度可划分为三个区域:1) 毛乌素沙地。2) 柴达木沙漠和塔克拉玛干沙漠。3) 库布其沙漠、乌兰布和沙漠、腾格里沙漠和巴丹吉林沙漠;洛川黄土的常量元素组成与塔克拉玛干沙漠和柴达木沙漠十分接近,证明黄土高原降尘来自塔克拉玛干沙漠和柴达木沙漠。 To understand the relation among China’s major deserts, sampling in the Chinese major desert rejoins including Mu Us sand landy, Hobq desert, Ulan Buh desert, Tengger desert, Badain Jaran desert, Taklimakan desert and Qaidam desert, a total of 49 samples were obtained and the constant elements (including Na, K, Ca, Mg, Al, Fe, Si) were analyzed. The result shows that the maximum coefficients of variation of total elements are Mg and Ca. The weathering characteristics analysis showed that the above regions are in the primary stage of weathering that losing Ca, Na. According to the degree of weathering the above regions can be divided into three regions: 1) Mu Us sand landy. 2) Qaidam desert and Taklimakan desert. 3) Hobq desert, Ulan Buh desert, Tengger desert, Badain Jaran desert. Major element characteristics of Luochuan loess are very close to Taklimakan desert and Qaidam desert, and different from other regions. The result proved that dust from the Loess Plateau comes from the Taklimakan desert and Qaidam desert.
沙尘暴源区,常量元素,风化,关系, Duststorm Source Regions
Constant Element
Weathering
Relation
基于常量元素的沙漠(沙地)地表沉积物的关系初步研究
准确称取沙样(过100目) 0.5 g于50 ml聚四氟乙烯烧杯中,加入10.0 ml HClO4和10.0 ml HF,轻轻摇动,混合均匀过夜。第二天在通风柜内用可条电热板控温加热消化,以不沸腾为准,直至冒白烟为止。冷却后,再加入5.0 ml HF,继续消化,直至冒白烟并蒸发近干。冷却后,加入4 ml 2 mol/L HCl溶液,加热溶解残渣,用超纯水定容于50 ml容量瓶中,摇均后用干滤纸过滤在10 ml塑料管中,然后用美国Thermo公司的IRIS Intrepid II XSP等离子发射光谱仪进行试验。测量的元素有Al、Fe、Ca、Na、K和Mg。
图1. 采样地点分布图
Sample informatio
区域
采样范围
个数(n)
东经(E)
北纬(N)
毛乌素沙地
107˚09'21.32''
109˚53'19.7"
37˚58'39.5"
39˚44'5.6"
12
库布其沙漠
107˚12'13.95''
108˚31'54.56''
39˚34'11.75″
40˚48'43.45"
8
乌兰布和沙漠
105˚45'29.21''
106˚51'14.55''
39˚46'16.99"
40˚45'21.3"
8
腾格里沙漠
102˚55'21.2''
105˚29'59.56''
37˚28'29"
38˚47'20.25
9
巴丹吉林沙漠
103˚8'9.8''
104˚43'34"
40˚23'30"
41˚5'33.8"
3
塔克拉玛干沙漠
80˚47'36.2''
89˚23'38"
36˚55'26.7"
39˚12'18.5"
4
柴达木沙漠
93˚46'50.4''
100˚14'29.1"
36˚14'0.74"
37˚37'23.2"
5
表1. 采样点信息
2.2.2. Si元素的实验方法
Si元素的测量则是根据GB7873-87使用容量法测量。过程为:称取2 g NaOH于坩埚高温使NaOH熔融,冷却加过100目筛子的样品,高温加热10 min,冷却将样品转入塑料杯并加入15 ml浓硝酸,加入3 g氯化钾并加入10 ml 15%氟化钾溶液形成氟硅酸钾沉淀,沉淀5 min,快速过滤,将沉淀物到入原塑料杯中,加入酚酞和氢氧化钠中和未沉淀的酸,最后将烧杯加入沸水至200 ml,加入酚酞,并加入氢氧化钠使溶液至微红色,记下消耗的氢氧化钠体积,换算成二氧化硅含量。
郭翠萍,郭 浩,辛智鸣. 基于常量元素的沙漠(沙地)地表沉积物的关系初步研究 Preliminary Research on the Relation among Surface Deposits of the Main Desert in China Based on Constant Elements[J]. 地球科学前沿, 2017, 07(06): 825-836. http://dx.doi.org/10.12677/AG.2017.76085
参考文献 (References)References
Zhang, X.Y., Gong, S., Zhou, T., et al. (2003) Sources of Asian Dust and Role of Climate Change versus Desertification in Asian Dust Emission. Geophysical Research Letters, 30, 2272. https://doi.org/10.1029/2003GL018206
Qi, Z.B., Jie, Y.J., Guang, Q.X., et al. (2014) Formation and Evolution of Sand Deserts in Xinjiang, Northwest China: Provenances of Desert Sands. Journal of Geographical Sciences, 24, 177-190.
Zhu, Z., Liu, S., Wu, Z. and Di, X. (1986) Deserts in China. Desert Research, Academia Sinica, Lanzhou, 1-66.
Lu, T.Y. and Sun, J.M. (2011) Luminescence Sensitivities of Quartz Grains from Eolian Deposits in Northern China and Their Implications for Provenance. Quaternary Research, 76, 181-189. https://doi.org/10.1016/j.yqres.2011.06.015
Sun, J.M. (2002) Provenance and Forming Mechanisms of the Loess Sediments on the High Mountain Regions of Northwestern China. Quatres, in Press. https://doi.org/10.1006/qres.2002.2381
王立强, 王亲. 河西走廊及其毗邻地区地表物沉积元素特征[J]. 西北地质, 2013, 46(2): 69-80.
张小曳, 张光宇, 朱光华, 等. 中国源区粉尘的元素示踪[J]. 中国科学(D辑), 1996, 26(5): 423-430.
Honda, M. and Shimizu, H. (1998) Geochemical, Mi-neralogical and Sedimentological Studies on the Taklimakan Desert Sands. Sedimentology, 45, 1125-1143. https://doi.org/10.1046/j.1365-3091.1998.00202.x
Hattori, Y., Suzuki, K., Honda, M., et al. (2003) Re-Os Systematic of the Taklimakan Desert Sands, Moraines and River Sediments around the Taklimakan Desert, and of Tibetan Soils. Geochimica et Cosmochimica Acta, 67, 1195-1205. https://doi.org/10.1016/S0016-7037(02)01206-1
Yang, Y., Sun, Y.B., Chen, H.Y. and Long, M. (2014) Oxygen Isotope Signatures of Quartz from Major Asian Dust Sources: Implications for Changes in the Provenance of Chinese Loess. Geochimica et Cosmochimica Acta, 4, 1121-1131.
Yang, X.P., Zhu, B.Q. and White, P.D. (2007) Provenance of Aeolian Sediment in the Taklamakan Desert of Western China Inferred from REE and Major Elemental Data. Quaternary International, 175, 71-85. https://doi.org/10.1016/j.quaint.2007.03.005
张翰之, 鹿化煜, 戈双文, 等. 中国北方沙漠/沙地锆石形态特征及其对物源的指示[J]. 第四纪研究, 2013, 33(2): 334-348.
Pell, S.D., Chivas, A.R. and Willmas, I.S. (1999) Great Victoria Desert: Develoment and Sand Provenance. Australian Journal of Earth Science, 46, 289-299. https://doi.org/10.1046/j.1440-0952.1999.00699.x
鲍峰, 董治宝. 柴达木盆地沙漠地表沉积物矿物构成特征[J]. 西北大学学报(自然科学版), 2015, 45(1): 90-98.
张小曳. 亚洲粉尘的源区分布、释放、输送、沉降与黄土堆积[J]. 第四纪研究, 2001, 21(1): 29-39.
熊洁. 全球主要沙尘源区分布及其沙尘气溶胶变化特征的模拟分布[D]: [硕士学位论文]. 南京: 南京信息工程大学, 2013.
杨艳, 王杰, 田明中, 等. 中国沙尘暴分布规律及研究方法分析[J]. 中国沙漠, 2012, 32(2): 466-471.
刘明哲, 魏文寿, 周宏飞, 等. 中国西北沙尘源区与日本沉降区大气气溶胶粒子理化特征及对比[J]. 中国沙漠, 2003, 23(4): 408-412.
Bory, A., Biscaye, P. and Grousset, F. (2003) Two Distinct Seasonal Asian Source Regions for Mineral Dust Deposited in Greenland. Geophysical Research Letters, 30, 1167-1178. https://doi.org/10.1029/2002GL016446
刘维明, 杨胜利, 方小敏, 等. 中国西北主要粉尘源区地表物质的常量元素分析[J]. 中国沙漠, 2008, 4(28): 642-649.
Castallo, S., Moreno, T., Querio, X., Alastuey, L., Cueyas, E., Herrmann, L., Moumkalia, M., Gibboms, W., et al. (2008) Trace Element Vari-ation in Size-Fractionated African Desert Dusts. Journal of Arid Environments, 72, 1034-1045. https://doi.org/10.1016/j.jaridenv.2007.12.007
罗万银, 董治宝, 钱广强, 等. 戈壁表层沉积物地球化学元素组成及其沉积意义[J]. 中国沙漠, 2014, 34(6): 1441-1451.
徐志伟, 鹿化煜, 赵存法, 等. 库姆塔格沙漠地表物质组成、来源和风化过程[J]. 地理学报, 2010, 65(1): 53-58.
赵贵海, 樊自立, 季方. 塔克拉玛干沙漠地区土壤元素背景值研究[J]. 干旱区研究, 1994, 11(2): 35-39.
刘英俊. 元素地球化学[M]. 北京: 科学出版社, 1984: 76-86.
彭红霞, 李长安, 杨桂芳, 等. 黄土中碳酸盐含量变化及其古气候记录——以兰州红咀寺剖面为例[J]. 地质科技情报, 2003, 22(1): 53-55.
郝永萍, 方小敏, 奚晓霞, 等. 青藏高原东北部及邻近地区土攘发育与气候定量模型的初步探讨[J]. 兰州大学学报: 自然科学版, 1995, 31(2): 165-170.
朱震达, 吴正, 刘恕, 等. 中国沙漠概论(修订版) [M]. 北京: 科学出版社, 1980: 9-90.
Guan, Q., Pan, B., Gao, H., et al. (2008) Geochemical Evidence of the Chinese Loess Provenance during the Late Pleistocene. Palaeogeography, 270, 53-58. https://doi.org/10.1016/j.palaeo.2008.08.013
Stevens, T., Carter, A., Watson, T.P., et al. (2013) Genetic Linkage between the Yellow River, the Mu Us Desert and the Chinese Loess Plateau. Quaternary Science Reviews, 78, 355-368. https://doi.org/10.1016/j.quascirev.2012.11.032
Nesbitt, H.W. and Young, G.M. (1982) Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299, 715-717. https://doi.org/10.1038/299715a0
Taylor, S.R. and McLennan, S.M. (1985) The Continental Crust: Its Composition and Evolution. Blackwell, London, 277.
McLennan, S.M. (1993) Weathering and Global Denudation. Journal of Geology, 101, 295-303. https://doi.org/10.1086/648222
陈旸, 陈骏, 刘连文. 甘肃西峰晚第三纪红黏土的化学组成及化学风化特征[J]. 地质力学学报, 2001, 7(2): 23-43.
Zhang, X.Y., Gong, S.L., Arimoto, R., Shen, Z.X., Mei, F.M., Wang, D. and Cheng, Y. (2003) Characterization and Temporal Variation of Asian Dust Aerosol from a Site in the Northern Chinese Deserts. Journal of Atmospheric Chemistry, 44, 241-257. https://doi.org/10.1023/A:1022900220357
Wang, X., Dong, Z., Yan, P., et al. (2005) Surface Sample Collection and Dust Source Analysis in Northwestern China. Catena, No. 59, 35-53. https://doi.org/10.1016/j.catena.2004.05.009
Sun, J. (2002) Provenance of Loess Material and Formation of Loess Deposits on the Chinese Loess Plateau. Earth and Planetary Science Letters, 203, 845-859.
李栋梁, 王涛, 钟海玲, 等. 中国北方沙尘暴气候成因及未来趋势预测[J]. 中国沙漠, 2004, 24(3): 376-379.
Gong, Z., Sun, J. and Lü, T. (2015) Investigating the Components of the Optically Stimulated Luminescence Signals of Quartz Grains from Sand Dunes in China. Quaternary Geochro-nology, 29, 48-57. https://doi.org/10.1016/j.quageo.2015.06.004
葛肖虹, 任收麦, 刘永江, 等. 中国西部的大陆构造格架[J]. 石油学报, 2001, 22(5): 1-7.
侯圣山, 杨石岭, 孙继敏, 等. 风成沉积物4-16μm石英氧同位素记录及其物质来源意义[J]. 中国科学(D辑), 2003, 33(6): 316-341.
杨杰东, 陈俊, 饶文波, 等. 中国沙漠的同位素分区特征[J]. 地球化学, 2007, 36(5): 516-524.
谢静, 杨石岭, 丁仲礼. 黄土物源碎屑锆石示踪方法与应用[J]. 中国科学(地球科学), 2012, 42(6): 923-933.
李云, 宋友桂, 聂军胜, 等. 基于U-Pb定年和单颗粒锆石粒径分析示踪中国黄土高原黄土和红粘土物源[J]. 地质论评, 2014, 60(2): 380-389.
Lu, Y. (1985) A Brief History of Loess Studies in China. Loess and the Environment. China Ocean Press, Bei-jing, 1-7.
汪海斌, 于英鹏, 刘现彬, 等. 黄土高原S1古土壤的地球化学特征及其对物源的指示[J]. 第四纪研究, 2011, 31(2): 339-349.
Zhuang, G., Guo, J., Yuan, H. and Zhao, C. (2001) The Compositions, Sources, and Size Distribution of the Dust Storm from China in Spring of 2000 and Its Impact on the Global Environment. Chinese Science Bulletin, 46, 34-70. https://doi.org/10.1007/BF02900460