诸多天然产物分子和合成化合物都含有氮杂环结构并具有潜在的药物活性。采用微波照射的方法高效构筑含氮的五元、六元、多元环化合物是绿色合成杂环类化合物的重要途径,也是当今有机合成化学领域研究的热点。本文以微波合成为主旨,综述了烯胺酮(酯)为合成砌块高效构筑含氮杂环化合物的研究进展。 Nitrogen-containing heterocyclic structures often are ubiquitous scaffolds in many natural products and usually exhibit diverse biological activities. Microwave irradiation synthesis has been recognized as an important method for the environmentally-friendly preparations of novel heter-ocyclic compounds, and attracted the interest of some scientific researchers. In this review, the recent progress of microwave irradiation construction of heterocyclic compounds with enaminone or enamino ester is summarized, and a full vision of its development is made.
烯胺酮(酯),微波合成,含氮杂环,绿色高效, Enaminone
Enamino Ester
Microwave Irradiation
N-Heterocyclic Compound
Green and Efficient
微波辅助以烯胺酮(酯)为砌块高效构筑含氮杂环化合物的研究进展<sup> </sup>
Eman M. H.等 [
42
] 报道了微波辅助下通过两条途径高效的合成含氮稠杂环化合物33 (图10),该反应以极性溶剂AcOH作溶剂,烯胺酮砌块28和杂环化合物29反应一步成环得到目标化合物33。在此基础上,研究者发现烯胺酮砌块28可由化合物31和DMF-DMA合成,于是设计了三组分的连级反应,在微波条件下三组分化合物迅速反应生成目标化合物。新设计三组分连级反应可以减少反应步骤,提高原子利用率,并且使得原本复杂的原料变为普通简单易得原料,降低了合成反应成本。
白海瑞,王晓晶,付黄梅,王 平,黄 超. 微波辅助以烯胺酮(酯)为砌块高效构筑含氮杂环化合物的研究进展 Advances in the Study of Microwave Irradiation Efficient Construction of Heterocyclic Compounds with Enaminone or Enamino Ester as Building Blocks[J]. 有机化学研究, 2017, 05(04): 164-174. http://dx.doi.org/10.12677/JOCR.2017.54022
参考文献 (References)References
Clardy, J. and Walsh, C. (2004) Lessons from Natural Molecules. Nature, 432, 829-837. https://doi.org/10.1038/nature03194
Li, J.W.H. and Vederas, J.C. (2009) Drug Discovery and Natural Products: End of an Era or an Endless Frontier. Science, 325, 161-165. https://doi.org/10.1126/science.1168243
Eicher, T., Hauptmann, S. and Speicher, A. (2013) The Chemistry of Heterocycles: Structures, Reactions, Synthesis, and Applications. John Wiley & Sons, Hoboken, New Jersey.
Ma, J., Li, Y., Ye, Q., et al. (2000) Constituents of Red Yeast Rice, a Traditional Chinese Food and Medicine. Journal of Agricultural and Food Chemistry, 48, 5220-5225. https://doi.org/10.1021/jf000338c
Meyer, E., Schwab, F., Gastmeier, P., et al. (2007) Antifungal Use in Intensive Care Units. Journal of Antimicrobial Chemotherapy, 60, 619-624. https://doi.org/10.1093/jac/dkm255
Sax, P.E., DeJesus, E., Mills, A., et al. (2012) Co-Formulated Elvitegravir, Cobicistat, Emtricitabine, and Tenofovir versus Co-Formulated Efavirenz, Emtricitabine, and Tenofovir for Initial Treatment of HIV-1 Infection: A Randomised, Double-Blind, Phase 3 Trial, Analysis of Results after 48 Weeks. The Lancet, 379, 2439-2448. https://doi.org/10.1016/S0140-6736(12)60917-9
Xia, Y., Yang, Z.Y., Xia, P., et al. (2001) Antitumor Agents. 211. Fluorinated 2-Phenyl-4-Quinolone Derivatives as Antimitotic Antitumor Agents. Journal of Medicinal Chemistry, 44, 3932-3936. https://doi.org/10.1021/jm0101085
Candel, F.J. and Peñuelas, M. (2017) Delafloxacin: Design, Development and Potential Place in Therapy. Drug Design, Development and Therapy, 11, 881. https://doi.org/10.2147/DDDT.S106071
McNulty, J. and Still, I.W.J. (2000) Synthetic Approaches to the Eudistomin Marine Alkaloids. Current Organic Chemistry, 4, 121-138. https://doi.org/10.2174/1385272003376319
Ovsianikov, A., Viertl, J., Chichkov, B., et al. (2008) Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication. Acs Nano, 2, 2257-2262. https://doi.org/10.1021/nn800451w
El-Sayed, R. (2008) Surface Active Properties and Biological Activity of Novel Nonionic Surfactants Containing Pyrimidines and Related Nitrogen Heterocyclic Ring Systems. Grasas Y Aceites, 59, 110-120. https://doi.org/10.3989/gya.2008.v59.i2.498
Brannock, K.C., Burpitt, R.D., Goodlett, V.W., et al. (1963) Enamine Chemistry. II. Reactions with Acetylenedicarboxylates. The Journal of Organic Chemistry, 28, 1464-1468. https://doi.org/10.1021/jo01041a006
Katritzky, A.R., Oniciu, D.C., O’Ferrall, R.A.M., et al. (1997) Study of the Enol-Enaminone Tautomerism of α-Heterocyclic Ketones by Deuterium Effects on 13C Chemical Shifts. Journal of the Chemical Society, Perkin Transactions, 2, 2605-2608. https://doi.org/10.1039/a705235i
Li, M., Guo, W., Wen, L., et al. (2006) Synthesis of Enaminones and Their Utility in Organic Synthesis. Chinese Journal of Organic Chemistry, 26, 1192.
Greenhill, J.V. (1977) Enaminones. Chemical Society Reviews, 6, 277-294. https://doi.org/10.1039/cs9770600277
Brannock, K.C., Bell, A., Burpitt, R.D., et al. (1964) Enamine Chemistry. IV. Cycloaddition Reactions of Enamines Derived from Aldehydes and Acyclic Ketones. The Journal of Organic Chemistry, 29, 801-812. https://doi.org/10.1021/jo01027a009
Kascheres, C.M. (2003) The Chemistry of Enaminones, Diazocarbonyls and Small Rings: Our Contribution. Journal of the Brazilian Chemical Society, 14, 945-969. https://doi.org/10.1590/S0103-50532003000600012
Shengjiao, Y., Yulan, C., Liu, L., et al. (2010) Three-Component Solvent-Free Synthesis of Highly Substituted Bicyclic Pyridines Containing a Ring-Junction Nitrogen. Green Chemistry, 12, 2043-2052. https://doi.org/10.1039/c0gc00373e
Mabkhot, Y.N., Aldawsari, F.D., Al-Showiman, S.S., et al. (2015) Novel Enaminone Derived from Thieno [2, 3-b] Thiene: Synthesis, X-Ray Crystal Structure, HOMO, LUMO, NBO Analyses and Biological Activity. Chemistry Central Journal, 9, 1-11.
Stork, G., Brizzolara, A., Landesman, H., et al. (1963) The Enamine Alkylation and Acylation of Carbonyl Compounds. Journal of the American Chemical Society, 85, 207-222. https://doi.org/10.1021/ja00885a021
Edafiogho, I.O., Moore, J.A., Alexander, M.S., et al. (1994) Nuclear Magnetic Resonance Studies of Anticonvulsant Enaminones. Journal of Pharmaceutical Sciences, 83, 1155-1170. https://doi.org/10.1002/jps.2600830817
Notz, W., Tanaka, F. and Barbas, C.F. (2004) Enamine-Based Organocatalysis with Proline and Diamines: The Development of Direct Catalytic Asymmetric Aldol, Mannich, Michael, and Diels-Alder Reactions. Accounts of Chemical Research, 37, 580-591. https://doi.org/10.1021/ar0300468
Chen, X., Bai, H., Huang, C. (2017) Concise Synthesis of Quinolinone Derivatives. Chinese Journal of Organic Chemistry, 37, 881-888.
Slosse, P. and Hootelé, C. (1979) Stereospecific Addition of Nucleophiles to Enaminones and the Synthesis of Myrtine and 4-Epimyrtine. Tetrahedron Letters, 20, 4587-4588. https://doi.org/10.1016/S0040-4039(01)86656-9
Elassar, A.Z.A. and El-Khair, A.A. (2003) Recent Developments in the Chemistry of Enaminones. Tetrahedron, 59, 8463-8480. https://doi.org/10.1016/S0040-4020(03)01201-8
Kappe, C.O. and Dallinger, D. (2006) The Impact of Microwave Synthesis on Drug Discovery. Nature Reviews Drug Discovery, 5, 51-63. https://doi.org/10.1038/nrd1926
Bose, A.K., Manhas, M.S., Ghosh, M., et al. (1991) Microwave-Induced Organic Reaction Enhancement Chemistry. 2. Simplified Techniques. The Journal of Organic Chemistry, 56, 6968-6970. https://doi.org/10.1021/jo00025a004
Kappe, C.O. (2008) Microwave Dielectric Heating in Synthetic Organic Chemistry. Chemical Society Reviews, 37, 1127-1139. https://doi.org/10.1039/b803001b
Adam, D. (2003) Microwave Chemistry: Out of the Kitchen. Nature, 421, 571-572. https://doi.org/10.1038/421571a
Bose, A.K., Manhas, M.S., Banik, B.K., et al. (1994) Microwave-Induced Organic Reaction Enhancement (More) Chemistry: Techniques for Rapid, Safe and Inexpensive Synthesis. Research on Chemical Intermediates, 20, 1-11. https://doi.org/10.1163/156856794X00027
Varma, R.S. (1999) Solvent-Free Organic Syntheses. Using Supported Reagents and Microwave Irradiation. Green Chemistry, 1, 43-55. https://doi.org/10.1039/a808223e
Mingos, D.M.P. and Baghurst, D.R. (1991) Tilden Lecture. Applications of Microwave Dielectric Heating Effects to Synthetic Problems in Chemistry. Chemical Society Reviews, 20, 1-47. https://doi.org/10.1039/cs9912000001
Gomha, S.M. and Abdel-Aziz, H.A. (2012) Enaminones as Building Blocks in Heterocyclic Preparations: Synthesis of Novel Pyrazoles, Pyrazolo[3,4-d]pyridazines, Pyrazolo[1,5-a]pyrimidines, Pyrido[2,3-d]pyrimidines Linked to Imidazo[2,1-b]thiazole System. Heterocycles, 85, 2291-2303. https://doi.org/10.3987/COM-12-12531
Saleh, T.S., A Al-Omar, M.A. and Abdel-Aziz, H.A. (2010) One-Pot Synthesis of Enaminones Using Gold’s Reagent. Letters in Organic Chemistry, 7, 483-486. https://doi.org/10.2174/157017810791824793
Al-Mousawi, S.M. and El-Apasery, M.A. (2009) Azolyacetones as Precursors to Indoles and Naphthofurans Facilitated by Microwave Irradiation with Simultaneous Cooling. Molecules, 14, 2976-2984. https://doi.org/10.3390/molecules14082976
Kalita, U., Kaping, S., Nongkynrih, R., et al. (2015) Synthesis, Structure Elucidation, and Anti-Inflammatory/ Anti-Cancer/Anti-Bacterial Activities of Novel (Z)-3-Adamantyl-1-aryl-prop/but-2-en-1-ones. Medicinal Chemistry Research, 24, 32-50. https://doi.org/10.1007/s00044-014-1086-x
Erray, I., Rezgui, F., Oble, J., et al. (2014) Microwave-Assisted Palladium-Catalyzed Allylation of β-Enaminones. Synlett, 25, 2196-2200. https://doi.org/10.1055/s-0034-1378540
De Luca, L., Giacomelli, G., Porcheddu, A., et al. (2003) Cellulose Beads: A New Versatile Solid Support for Microwave-Assisted Synthesis. Preparation of Pyrazole and Isoxazole Libraries. Journal of Combinatorial Chemistry, 5, 465-471. https://doi.org/10.1021/cc0201187
Kralj, D., Novak, A., Dahmann, G., et al. (2008) One-Pot Parallel Solution-Phase Synthesis of 1-Substituted 4-(2-Aminoethyl)-1H-Pyrazol-5-ols. Journal of Combinatorial Chemistry, 10, 664-670. https://doi.org/10.1021/cc8000794
Saleh, T.S., Narasimharao, K., Ahmed, N.S., et al. (2013) Mg-Al Hydrotalcite as an Efficient Catalyst for Microwave Assisted Regioselective 1,3-Dipolar Cycloaddition of Nitrilimines with the Enaminone Derivatives: A Green Protocol. Journal of Molecular Catalysis A: Chemical, 367, 12-22. https://doi.org/10.1016/j.molcata.2012.11.009
Zhang, X.Y., Yang, Z.W., Chen, Z., et al. (2016) Tandem Copper-Catalyzed Propargylation/Alkyne Azacyclization/Isomerization Reaction under Microwave Irradiation: Synthesis of Fully Substituted Pyrroles. The Journal of Organic Chemistry, 81, 1778-1785. https://doi.org/10.1021/acs.joc.5b02429
Abbas, E.M.H., Gomha, S.M. and Farghaly, T.A. (2014) Multicomponent Reactions for Synthesis of Bioactive Polyheterocyclic Ring Systems under Controlled Microwave Irradiation. Arabian Journal of Chemistry, 7, 623-629. https://doi.org/10.1016/j.arabjc.2013.11.036
Porcheddu, A., Giacomelli, G., De Luca, L., et al. (2004) A “Catch and Release” Strategy for the Parallel Synthesis of 2,4,5-Trisubstituted Pyrimidines. Journal of Combinatorial Chemistry, 6, 105-111. https://doi.org/10.1021/cc034024o
Almazroa, S., Elnagdi, M.H. and El-Din, A.M.S. (2004) Studies with Enaminones: The Reaction of Enaminones with Aminoheterocycles. A Route to Azolopyrimidines, Azolopyridines and Quinolones. Journal of Heterocyclic Chemistry, 41, 267-272. https://doi.org/10.1002/jhet.5570410219
Tu, S., Zhang, Y., Jiang, B., et al. (2006) One-Pot Synthesis of N-Substituted Azapodophyllotoxin Derivatives under Microwave Irradiation. Synthesis, No. 22, 3874-3882. https://doi.org/10.1055/s-2006-950297
Li, M., Guo, A., et al. (2006) Synthesis of Enaminones and Their Utility in Organic Synthesis. Chinese Journal of Organic Chemistry, 26, 1192-1207.
Wang, J., Li, J., Liu, H., et al. (2015) A Facile and Efficient Synthesis of Spiro[indoline-3,5’-pyrido[2,3-d] Pyrimidine] Derivatives via Microwave-Assisted Multicomponent Reactions. Letters in Organic Chemistry, 12, 62-66. https://doi.org/10.2174/157017861201150112124526
Yan, S., Huang, C., Su, C., et al. (2009) Facile Route to 1,3-Diazaheterocycle-Fused [1,2b]Isoquinolin-1(2H)-One Derivatives via Substitution-Cyclization Reactions. Journal of Combinatorial Chemistry, 12, 91-94. https://doi.org/10.1021/cc900121c
Al-Etaibi, A.M., El-Apasery, M.A., Ibrahim, M.R., et al. (2012) A Facile Synthesis of New Monoazo Disperse Dyes Derived from 4-Hydroxyphenylazopyrazole-5-Amines: Evaluation of Microwave Assisted Dyeing Behavior. Molecules, 17, 13891-13909. https://doi.org/10.3390/molecules171213891
Pena, R., Jiménez-Alonso, S., Feresin, G., et al. (2013) Multicomponent Synthesis of Antibacterial Dihydropyridin and Dihydropyran Embelin Derivatives. The Journal of Organic Chemistry, 78, 7977-7985. https://doi.org/10.1021/jo401189x