当今世界水体污染加剧而引起有害有毒藻类水华的频繁发生,这已经成为全球相关研究者普遍关注的生态环境问题,在所有的有害淡水藻类中,已知毒性最高、污染范围最广的是蓝藻。本文结合近年来国内外关于蓝藻毒素的研究文献,首先论述了产毒的蓝藻种类,然后就淡水蓝藻毒素的结构、生理毒性机理和蓝藻毒素的降解方式与条件进行了较深入探讨,最后本文着重综述了蓝藻毒素对淡水浮游动物(轮虫、枝角类、桡足类和原生动物)生理生态影响的研究进展,同时就淡水蓝藻毒素的今后研究方向提出了一些建议。 The frequent occurrence of water bloom of harmful and toxic algae due to increasing water pollution attracts widely attention of environmental problem researchers in the whole world. Among all harmful freshwater algae, the known highest toxic alga and the widely polluted alga is blue-green alga. According to recent research papers about blue-green algae toxin in China and aboard, firstly, the toxic blue-green algae species was described briefly; secondly, the structure, the toxic physiological mechanism and the degradation ways-conditions of cyanobacterial toxins were integratively outlined; lastly, the research progress of physiological and ecological effect of blue algae toxin to freshwater zooplankton including rotifera, cladoceran, copepod and protozoan is especially discussed in this paper. In the same time, some suggestions about the future research direction of freshwater blue-algae toxin were proposed.
谢钦铭,张燕伟,骆和东. 淡水蓝藻毒素及其对浮游动物生理生态影响的研究进展Research Progress on Physiological and Ecological Effect of Freshwater Cyanobacterial Toxins to Zooplankton[J]. 水产研究, 2017, 04(04): 149-158. http://dx.doi.org/10.12677/OJFR.2017.44022
参考文献 (References)References
Codd, G.A. (2000) Cyanobacterial Toxins, the Perception of Water Quality and the Prioritization of Eutrophication Control. Ecological Engineering, 16, 51-60.
https://doi.org/10.1016/S0925-8574(00)00089-6
丁笑生, 李效宇. 微囊藻毒素的研究进展[J]. 水产科学, 2004, 23(12): 42.
Carmichael, W.W. (1992) Cyanobacteria Secondary Metabolites: The Cyanotoxins. Journal of Applied Bacteriology, 72, 445-459.
https://doi.org/10.1111/j.1365-2672.1992.tb01858.x
Hughes, E.O., Gorham, P.R. and Zehnder, A. (1958) Toxicity of a Unialgal Culture of Microcystis Aeruginosa. Canadian Journal of Microbiology, 4, 225-236.
https://doi.org/10.1139/m58-024
Sivonen, K. (1996) Cyanobacterial Toxins and Toxin Production. Phycologia, 35, 12-24.
https://doi.org/10.2216/i0031-8884-35-6S-12.1
Hitzfeld, B.C., Hogers, J. and Dierich, D.R. (2000) Cyanobacterial Toxins: Removal during Drinking Water Treatment, and Human Risk Assessment. Environmental Health Perspectives, 108, 113-122.
https://doi.org/10.1289/ehp.00108s1113
Zhang, H.T., Dan, Y.B., Adams, C.D., Shi, H.L., Ma, Y.F. and Eichholz, T. (2017) Effect of Oxidant Demand on the Release and Degradation of Microcystin-LR from Microcystis aeruginosa during Oxidation. Chemosphere, 181, 562-568.
https://doi.org/10.1016/j.chemosphere.2017.04.120
Ma, M., Liu, R.P., Liu, H.J. and Qu, J.H. (2012) Chlorination of Microcystis aeruginosa Suspension: Cell Lysis, Toxin Release and Degradation. Journal of Hazardous Materials, 217-218, 279-285.
https://doi.org/10.1016/j.jhazmat.2012.03.030
Cook, W.O., Beasley, V.R., Dahlem, A.M., et al. (1988) Comparison of Effects of Anatoxin-a(s) and Paraoxon, Physostigmine and Pyridostigmine on Mouse Brain Cholinesterase Activity. Toxicon, 26, 750-753.
https://doi.org/10.1016/0041-0101(88)90282-6
Milena, B., Danilo, A.B., Elio, P., et al. (1994) Anatoxin-a and a Previously Unknown Toxin in Anabaena planctonica from Blooms Found in Lake Mulargia (Italy). Toxicon, 32, 369-373.
https://doi.org/10.1016/0041-0101(94)90089-2
Carmichael, W.W. (1994) The Toxins of Cyanobacteria. Scientific American, 270, 78-86.
https://doi.org/10.1038/scientificamerican0194-78
Shimizu, Y., Hsu, C., Fallon, W.E., Oshima, Y., Miura, I. and Nakanishi, K. (1978) Structure of Neosaxitoxin. Journal of the American Chemical Society, 100, 6791-6793.
https://doi.org/10.1021/ja00489a060
Meili, N., Christen, V. and Fent, K. (2016) Nodularin Induces Tumor Necrosis Factor-Alpha and Mitogen-Activated Protein Kinases (MAPK) and Leads to Induction of Endoplasmic Reticulum Stress. Toxicology and Applied Pharmacology, 300, 25-33.
https://doi.org/10.1016/j.taap.2016.03.014
Calafat, J., Janssen, H., Knol, E.F., et a1. (2000) The Bactericidal/Permeabilityin-Creasing Protein (BPI) Is Membrane-Associated in Azurophil Granules of Human Neutrophils, and Relocation Occurs Upon Cellularactivation. APMIS, 108, 201-208.
https://doi.org/10.1034/j.1600-0463.2000.d01-45.x
Lindsay, J., Metcalf, J.S. and Codd, G.A. (2006) Protection against the Toxicity of Microcystin-LR and Cylindrospermopsin Artemia salina and Daphnia sp. by Pre-Treatment with Cyano-Bacterial Lipopolysaccharide (LPS). Toxicon, 48, 995-1001.
https://doi.org/10.1016/j.toxicon.2006.07.036
Duy, T.N., et al. (2000) Toxicology and Risk Assessment of Freshwater Cyanobacterial (Blue-Green Algae)toxin in Water. Reviews of Environmental Contamination and Toxicology, l63, l13-l85.
何振荣, 俞家禄, 何家苑, 等. 东湖蓝藻水华毒性的研究II季节变化及微囊藻的毒性[J]. 水生生物学报, 1989, 20(2): 1920-1940.
Rothhaupt, K.O. (1991) The Influence of Toxic and Filamentous Bluegreen Algae on Feeding and Population Growth of the Rotifer Brachionus rubens. Hydrobiologia, 76, 67-72.
Starkweather, P.L. and Kellar, P.E. (1987) Combined Influences of Particulate and Dissolved Factors in the Toxicity of Microcystis aeruginosa (NRC-SS-17) to the Rotifer Brachionus calyciforus. Hydrobiologia, 147, 375-378.
https://doi.org/10.1007/BF00025767
杨州, 孔繁翔, 史小丽, 杨家新. 萼花臂尾轮虫培养滤液对铜绿微囊藻, 斜生栅藻和小球藻群体形成及生长的影响[J]. 应用生态学报, 2005, 16(6): 1138-1141.
耿红. 水体富营养化和蓝藻对轮虫影响的生态毒理学研究[D]: [博士学位论文]. 武汉: 中国科学院水生生物研究所, 2006.
Lürling, M. and Beekman, W. (2006) Influence of Food-Type on the Population Growth Rate of the Rotifer Brachionus calyciflorus in Shortchronic Assays. Acta Zoologica Sinica, 52, 70-78.
Geng, H., Xie, P. and Xu, J. (2006) Effect of Toxic Microcystis aeruginosa PCC7820 in Combination with a Green Alga on the Experimental Population of Brachionus calyciflorus and B. Rubens. Bulletin of Environmental Contamination and Toxicology, 76, 963-969.
https://doi.org/10.1007/s00128-006-1012-0
Hong, G. and Xie, P. (2008) Experimental Studies on the Effects of Toxic Microcystis aeruginosa PCC7820 on the Survival and Reproduction of Two Freshwater Rotifers Brachionus calyciflorus and B. rubens. Ecotoxicology, 17, 709-715.
https://doi.org/10.1007/s10646-008-0219-8
Alejandro Federico, A.-M., Rocio, F., Sarma, S.S.S. and Nandini, S. (2009) Effect of Mixed Toxic Diets (Microcystis and Chlorella) on the Rotifers Brachionus calyciflorus and Brachionus havanaensis Cultured Alone and Together. Limnologica, 39, 302-305.
https://doi.org/10.1016/j.limno.2009.06.002
Silvaspares, M.C. (2010) Responses of the Rotifer Brachionus calyciflorus to Two Tropical Toxic Cyanobacteria (Cylindrospermopsis raciborskii and Microcystis aeruginosa) in Pure and Mixed Diets with Green Algae. Journal of Plankton Research, 32, 999-1008.
https://doi.org/10.1093/plankt/fbq042
Chen, W., Hao, L., Zhang, Q. and Dai, S. (2011) Effects of Nitrite and Toxic Microcystis Aeruginosa PCC7806 on the Growth of Freshwater Rotifer Brachionus Calyciflorus. Bulletin of Environmental Contamination and Toxicology, 86, 263-267.
https://doi.org/10.1007/s00128-011-0208-0
Zhang, X. and Geng, H. (2012) Effect of Microcystis aeruginosa on the Rotifer Brachionus calyciflorus at Different Temperatures, Bulletin of Environmental Contamination and Toxicology, 88, 20-24.
https://doi.org/10.1007/s00128-011-0450-5
谢钦铭, 骆和东, 魏施, 江兴龙, 林伟彬. 铜绿微囊藻毒对褶皱臂尾轮虫种群生长的影响[J]. 安徽农业科学, 2016, 44(35): 11-13, 72.
Gilbert, J.J. (1994) Susceptibility of Planktonic Rotifers to a Toxic Strain of Anabaena flos-aquae. Limnology and Oceanography, 39, 1286-1297.
https://doi.org/10.4319/lo.1994.39.6.1286
陈艳. 微囊藻毒素对褶皱臂尾轮虫的毒性效应和种群增长影响[J]. 中国环境科学, 2002, 22(3): 198-201.
Reinikainen, M., Ketola, M. and Walls, M. (1994) Effects of the Concentrations of Toxic Microcystis aeruginosa and an Alternative Food on the Survival of Daphnia pulex. Limnology and Oceanography, 9, 424-432.
https://doi.org/10.4319/lo.1994.39.2.0424
Hanazato, T. and Yasuno, M. (1984) Growth, Reproduction and Assimilation of Moina macrocopa Fed on Microcystis and/or Chlorella. Japanese Journal of Ecology, 34, 195-202.
李效宇, 张进忠. 有毒铜绿微囊藻对大型溞生长和繁殖的影响研究[J]. 水产科学, 2006, 25(12): 632-634.
何家菀, 何振荣, 郭琼林. 有毒铜绿微囊藻对鱼和溞的毒性[J]. 湖泊科学, 1997, 9(1): 49-56.
DeMott, W.R., Zhang, Q.X. and Carmichael, W.W. (1991) Effects of Toxic Cyanobacteria and Purified Toxins on the Survival and Feeding of a Copepod and Three Species of Daphnia. Limnology and Oceanography, 36, 1346-1357.
https://doi.org/10.4319/lo.1991.36.7.1346
Nizan, S., Dimentman, C. and Shilo, M. (1986) Acute Toxic Effects of the Cyanobacterium Microcystis aeruginosa on Daphnia magna. Limnology and Oceanography, 31, 497-502.
https://doi.org/10.4319/lo.1986.31.3.0497
Nandini, S. and Rao, T.R. (1998) Somatic and Population Growth in Selected Cladoceran and Rotifer Species Offered the Cyanobacterium Microcystis aeruginosa as Food. Aquatic Ecology, 31, 283-298.
https://doi.org/10.1023/A:1009940127959
Ger Kemal, A., Swee, J.T. and Goldman, C.R. (2009) Microcystin-LR Toxicity on Dominant Copepods Eurytemora affinis and Pseudodiaptomus forbesi of the Upper San Francisco Estuary. Science of the Total Environment, 407, 4852-4857.
https://doi.org/10.1016/j.scitotenv.2009.05.043
Ger Kemal, A., Swee, J.T., Baxa, D.V., Lesmeister, S. and Charles, R.G. (2010) The Effects of Dietary Microcystis aeruginosa and Microcystin on the Copepods of the Upper San Francisco Estuary. Freshwater Biology, 55, 1548-1559.
https://doi.org/10.1111/j.1365-2427.2009.02367.x
Ger Kemal, A., Panosso, R. and Lürling, M. (2011) Consequences of Acclimation to Microcystis on the Selective Feeding Behavior of the Calanoid Copepod Eudiaptomus gracilis. Limnology and Oceanography, 56, 2103-2114.
https://doi.org/10.4319/lo.2011.56.6.2103
Watanabe, M., Kaya, K. and Takamura, N. (1992) Fate of the Toxic Cyclic Heptapeptides, the Microcystins, from Blooms of Microcysis(Cyanobacterial) in a Hypertrophic Lake. Phycel, 28, 761-767.
https://doi.org/10.1111/j.0022-3646.1992.00761.x
谢钦铭, 骆和东, 林伟彬, 魏施. 铜绿微囊藻对胸刺水蚤种群生长与繁殖的影响[J]. 农业科学, 2016, 6(6): 210-217.
刘河川, 等. 铜绿微囊藻对浮游动物生长繁殖的影响[J]. 信阳师范学院学报(自然科学版), 2004, 17(4): 437-439.
Ka, S., Mendoza-Vera, J.M., Bouvy, M., Champalbert, G., N’Gom-Ka, R. and Pagano, M. (2012) Can Tropical Freshwater Zooplankton Graze Efficiently on Cyanobacteria? Hydrobiologia, 679, 119-138.
https://doi.org/10.1007/s10750-011-0860-8
Chakraborty, S., Bhattacharya, S., Feudel, U. and Chattopadhyay, J. (2012) The Role of Avoidance by Zooplankton for Survival and Dominance of Toxic Phytoplankton. Ecological Complexity, 11, 144-153.
https://doi.org/10.1016/j.ecocom.2012.05.006
谢钦铭, 张燕伟, 孔江红. 铜绿微囊藻通过食物链对红鲤肝和鳃组织的影响[J]. 集美大学学报(自然科学版), 2011, 16(6): 407-412.
Lampert, W. (1982) Further Studies on the Inhibitory Effect of the Toxic Blue-Green Microcystis aeruginosa on the Filtering Rate of Zooplankton. Archiv für Hydrobiologie, 95, 207-220.
Freitas, E.C., Pinheiro, C., Rocha, O. and Loureiro, S. (2014) Can Mixtures of Cyanotoxins Represent a Risk to the Zooplankton? The Case Study of Daphnia magna Straus Exposed to Hepatotoxic and Neurotoxic Cyanobacterial Extracts. Harmful Algae, 31, 143-152.
https://doi.org/10.1016/j.hal.2013.11.004
Burja Adam, M., Banaigs, B., Abou-Mansour, E., et al. (2001) Marine Cyanobacteria—A Profile Source of Natural Products. Tetrahedron, 57, 9347-9371.
https://doi.org/10.1016/S0040-4020(01)00931-0
Shimizu, Y. (2003) Microalgal Metabolites. Current Opinion in Microbiology, 6, 236-243.
https://doi.org/10.1016/S1369-5274(03)00064-X
Bartolomé D’ors, A. and Sánchez-Fortún, M.C. (2013) Toxic Risk Associated with Sporadic Occurrences of Microcystis aeruginosa Blooms from Tidal Rivers in Marine and Estuarine Ecosystems and Its Impact on Artemia franciscana Nauplii Populations. Chemosphere, 90, 2187-2192.
https://doi.org/10.1016/j.chemosphere.2012.11.029