近年来,临床上以念珠菌为代表的侵袭性真菌感染的发病率和致死率呈急剧上升趋势,且临床菌株的耐药性也随之发生且日益严重。本文综述了念珠菌的临床症状、检验技术的发展、耐药菌株的发生和耐药机理研究现状和抗真菌药物的使用和开发,为诊断和治疗临床上日益严重的念珠菌病提供依据。 In recent years, the morbidity and mortality of candidiasis are increasing rapidly. At the same time, the extensive use of antifungal agents has led to the development of drug-resistant strains. This review summarizes the clinical symptoms, the development of detection methods, the development and resistance mechanism of drug-resistant strains, and the development and usage of antifungal agents so as to provide a basis for diagnosis and treatment of candidiasis.
念珠菌病,多重耐药性,耐药机理, Candidiasis
Multiresistance
Mechanism of Multiple Antibiotic Resistance
临床上念珠菌耐药性发生的研究进展
付婉瑞,李凌志,钟 鑫,胡莺菡,朱晓凤,宋章永. 临床上念珠菌耐药性发生的研究进展The Research Progress on Occurrence of Candida Drug Resistance[J]. 微生物前沿, 2017, 06(04): 98-107. http://dx.doi.org/10.12677/AMB.2017.64013
参考文献 (References)References
Gow, N.A.R., and Netea, M.G. (2016) Medical Mycology and Fungal Immunology: New Research Perspectives Addressing a Major World Health Challenge. Philosophical Transactions of the Royal Society B Biological Sciences, 371, 20150462. https://doi.org/10.1098/rstb.2015.0462
Wager, L.C.M., Hole, C.R., Wozniak, K.L. and Wormley Jr., F.L. (2016) Cryptococcus and Phagocytes: Complex Interactions That Influence Disease Outcome. Frontiers in Microbiology, 7, 105. https://doi.org/10.3389/fmicb.2016.00105
魏丹. 医院念珠菌感染的临床分布及耐药性[J]. 中国实用医药, 2016(1): 166-167.
Tan, B.H., Chakrabarti, A., Li, R.Y., et al. (2015) Incidence and Species Distribution of Candidaemia in Asia: A Laboratory-Based Surveillance Study. Clinical Microbiology & Infection the Official Publication of the European Society of Clinical Microbiology & Infectious Diseases, 21, 946-953. https://doi.org/10.1016/j.cmi.2015.06.010
Shen, Y.Z. and Zhang, Y.X. (2010) Candida glabrata: Epidemiology and Mechanism of Antifungal Resistance. Chinese Journal of Infection & Chemotherapy, 10, 59-62.
陈建魁, 牟兆钦. 白色念珠菌感染的分子生物学诊断研究进展[J]. 军事医学, 1997(1): 67-70.
莫翼军, 翁儿, 郭飞, 等. 白色念珠菌快速免疫层析法的临床应用[J]. 中国卫生检验杂志, 2016(9): 1254-1255.
孙勇, 李言飞. 国内真菌临床检验技术的研究进展[J]. 检验医学与临床, 2010, 7(5): 454-457.
Cairns, T.C., Studholme, D.J., Talbot, N.J., et al. (2016) New and Improved Techniques for the Study of Pathogenic Fungi. Trends in Microbiology, 24, 35. https://doi.org/10.1016/j.tim.2015.09.008
闫金坤, 刘建钗, 刘彦威, 等. 鸡白色念珠菌五种染色方法的比较研究[J]. 中国兽医科学, 2016(7): 905-910.
De Respinis, S., Tonolla, M., Pranghofer, S., et al. (2013) Identification of Dermatophytes by Matrix-Assisted Laser Desorption/Ionization Time-of-flight Mass Spectrometry. Medical Mycology, 51, 514. https://doi.org/10.3109/13693786.2012.746476
Saracli, M.A., Fotherqill, A.W., Sutton, D.A., et al. (2015) Detection of Triazole Resistance among Candida species by Matrix-Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS). Medical Mycology, 53, 736-742. https://doi.org/10.1093/mmy/myv046
Perlin, D.S., and Wiederhold, N.P. (2017) Culture-Independent Molecular Methods for Detection of Antifungal Resistance Mechanisms and Fungal Identification. Journal of Infectious Diseases, 216, S458. https://doi.org/10.1093/infdis/jix121
Liu, W., Tan, J., Sun, J., et al. (2014) Invasive Candidiasis in Intensive Care Units in China: in Vitro Antifungal Susceptibility in the China-SCAN Study. Journal of Antimicrobial Chemotherapy, 69, 162-167. https://doi.org/10.1093/jac/dkt330
Wisplinghoff, H., Seifert, H., Wenzel, R.P., et al. (2003) Current Trends in the Epidemiology of Nosocomial Bloodstream Infections in Patients with Hematological Malignancies and Solid Neoplasms in Hospitals in the United States. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 36, 1103.
李凌华, 雷华丽, 唐小平. 我国机会性致病真菌的耐药现状[J]. 国际流行病学传染病学杂志, 2016, 43(6): 412-415.
刘君玲, 孙贺元, 王树英. 2008-2012年医院重症监护室念珠菌感染情况分析[J]. 中华流行病学杂志, 2014, 35(3): 326-328.
Li, Z.H., Kong, Q.T. and Deng, L. (2015) Distribution and Drug Susceptivility Analysis of 290 strains of Deep Fungal Infections. Journal of Practical Dermatology, 8, 167-170.
Pfaller, M.A. (2012) Antifungal Drug Resistance: Mechanisms, Epidemiology, and Consequences for Treatment. American Journal of Medicine, 125, S3. https://doi.org/10.1016/j.amjmed.2011.11.001
Berkow, E.L. and Lockhart, S.R. (2017) Fluconazole Resistance in Candida Species: A Current Perspective. Infection & Drug Resistance, 10, 237-245. https://doi.org/10.2147/IDR.S118892
Rocha, M.F., Bandeira, S.P., de Alencar, et al. (2017) Azole Resistance in Candida albicans from Animals: Highlights on Efflux Pump Activity and Gene Overexpression. Mycoses, 60, 462-468. https://doi.org/10.1111/myc.12611
王威, 邵龙, 郑娜, 等. 外排转运蛋白介导的抗真菌药物耐药研究进展[J]. 现代生物医学进展, 2017, 17(12): 2377-2380.
Coste, A.T., Crittin, J., Bauser, C., et al. (2009) Functional Analysis of Cis- and Trans-Acting Elements of the Candida albicans cdr2 Promoter with a Novel Promoter Reporter System. Eukaryotic Cell, 8, 1250-1267. https://doi.org/10.1128/EC.00069-09
Siikala, E., Rautemaa, R., Richardson, M., et al. (2010) Persistent Candida albicans Colonization and Molecular Mechanisms of Azole Resistance in Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy (Apeced) Patients. Journal of Antimicrobial Chemotherapy, 65, 2505-2513. https://doi.org/10.1093/jac/dkq354
Mogavero, S., Tavanti, A., Senesi, S., et al. (2011) Differential Requirement of the Transcription Factor mcm1 for Activation of the Candida albicans Multidrug Efflux Pump mdr1 by Its Regulators mrr1 and cap1. Antimicrobial Agents & Chemotherapy, 55, 2061-2066. https://doi.org/10.1128/AAC.01467-10
Souza, A.C.R., Fuchs, B.B., Pinhati, H.M.S., et al. (2015). Candida parapsilosis Resistance to Fluconazole: Molecular Mechanisms and in Vivo Impact in Infected Galleria Mellonella Larvae. Antimicrobial Agents & Chemotherapy, 59, 6581-6587. https://doi.org/10.1128/AAC.01177-15
Zhang, L., Xiao, M., Watts, M.R., et al. (2015) Development of Fluconazole Resistance in a Series of Candida parapsilosis Isolates from a Persistent Candidemia Patient with Prolonged Antifungal Therapy. Bmc Infectious Diseases, 15, 340. https://doi.org/10.1186/s12879-015-1086-6
Noël, T. (2012). The Cellular and Molecular Defense Mechanisms of the Candida Yeasts against Azole Antifungal Drugs. Journal De Mycologie Médicale, 22, 173. https://doi.org/10.1016/j.mycmed.2012.04.004
Coste, A., Turner, V., Ischer, F., et al. (2006) A Mutation in Tac1p, a Transcription Factor Regulating Cdr1 and Cdr2, Is Coupled with Loss of Heterozygosity at Chromosome 5 to Mediate Antifungal Resistance in Candida albicans. Genetics, 172, 2139-2156. https://doi.org/10.1534/genetics.105.054767
Dunkel, N., JuliaBlaß, Rogers, P.D. and Morschhäuser, J. (2008) Mutations in the Multidrug Resistance Regulator Mrr1, Followed by loss of Heterozygosity, Are the Main Cause of Mdr1 Overexpression in Fluconazole-Resistant Candida albicans Strains. Molecular Microbiology, 69, 827-840. https://doi.org/10.1111/j.1365-2958.2008.06309.x
Catarina, C., Jonathan, R., Miranda, I.M., et al. (2016) Clotrimazole Drug Resistance in Candida glabrataclinical Isolates Correlates with Increased Expression of the Drug: H + Antiporters Cgaqr1, Cgtpo1-1, Cgtpo3, and Cgqdr2. Frontiers in Microbiology, 7, 74.
Sélène, F., Françoise, I., David, C., et al. (2009) Gain of Function Mutations in Cgpdr1 of Candida glabratanot only Mediate Antifungal Resistance but also Enhance Virulence. PLOS Pathogens, 5, e1000268. https://doi.org/10.1371/journal.ppat.1000268
Flowers, S.A., Barker, K.S., Berkow, E.L., et al. (2012) Gain-of-Function Mutations in upc2 are a Frequent Cause of erg11 Upregulation in Azole-Resistant Clinical Isolates of Candida albicans. Eukaryotic Cell, 11, 1289-1299. https://doi.org/10.1128/EC.00215-12
Morio, F., Loge, C., Besse, B., et al. (2010) Screening for Amino Aacid Substitutions in the Candida albicans erg11 Protein of Azole-Susceptible and Azole-Resistant Clinical Isolates: New Substitutions and a Review of the Literature. Diagnostic Microbiology & Infectious Disease, 66, 373-384. https://doi.org/10.1016/j.diagmicrobio.2009.11.006
Marichal, P., Koymans, L., Willemsens, S., et al. (1999) Contribution of Mutations in the Cytochrome p450 14 Alpha-Demethylase (erg11p, cyp51p) to Azole Resistance in Candida albicans. Microbiology, 145, 2701-2713. https://doi.org/10.1099/00221287-145-10-2701
李莉, 苏维奇. 白色假丝酵母菌ERG11基因突变与唑类抗真菌药物耐药的关系[J]. 中华实用诊断与治疗杂志, 2011, 25(9): 870-872.
Wu, Y., Gao, N., Li, C., et al. (2017) A Newly Identified Amino Acid Substitution t123i in the 14α-demethylase (erg11p) of Candida albicans Confers Azole Resistance. Fems Yeast Research, 17. https://doi.org/10.1093/femsyr/fox012
王明永, 翟晶晶, 左萌洁, 等. 白色假丝酵母菌对氟康唑耐药性及Erg11基因突变分析[J]. 中华医院感染学杂志, 2015(11): 2401-2404.
Scorzoni, L., de Paula, E, Silva, A.C., et al. (2017) Antifungal Therapy: New Advances in the Understanding and Treatment of Mycosis. Frontiers in Microbiology, 8, 36. https://doi.org/10.3389/fmicb.2017.00036
Tan, J., Zhang, J., Chen, W., et al. (2015) The A395t mutation in erg11 gene Confers Fluconazole Resistance in Candida tropicalis Causing Candidemia. Mycopathologia, 179, 213-218. https://doi.org/10.1007/s11046-014-9831-8
Vincent, B.M., Lancaster, A.K., Scherzshouval, R., et al. (2013) Fitness Trade-Offs Restrict the Evolution of Resistance to Mmphotericin b. PLoS Biology, 11, e1001692. https://doi.org/10.1371/journal.pbio.1001692
Vandeputte, P., Tronchin, G., Bergès, T., et al. (2007) Reduced Susceptibility to Polyenes Associated with a Missense Mutation in the erg6 gene in a Clinical Isolate of Candida glabrata with Pseudohyphal Growth. Antimicrobial Agents & Chemotherapy, 51, 982-990. https://doi.org/10.1128/AAC.01510-06
Branco, J., Ola, M., Silva, R.M., et al. (2017) Impact of erg3 Mutations and Expression of Ergosterol Genes Controlled by upc2 and ndt80 in Candida parapsilosis Azole Resistance. Clinical Microbiology & Infection, 23, 575.e1-575.e8. https://doi.org/10.1016/j.cmi.2017.02.002
Vandeputte, P., Ferrari, S. and Coste, A.T. (2011) Antifungal Resistance and New Strategies to Control Fungal Infections. International Journal of Microbiology, 2012, Article ID: 713687.
Perlin, D.S. (2015) Echinocandin Resistance in Candida. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 61, S612. https://doi.org/10.1093/cid/civ791
Garciaeffron, G., Park, S. and Perlin, D.S. (2009) Correlating Echinocandin Mic and Kinetic Inhibition of fks1 Mutant Glucan Synthases for Candida albicans: Implications for Interpretive Breakpoints. Antimicrobial Agents & Chemotherapy, 53, 112-122. https://doi.org/10.1128/AAC.01162-08
Perlin, D.S. (2007) Resistance to Echinocandin-Class Antifungal Drugs. Drug Resistance Updates Reviews & Commentaries in Antimicrobial & Anticancer Chemotherapy, 10, 121-130. https://doi.org/10.1016/j.drup.2007.04.002
Garcia-Effron, G., Katiyar, S.K., Park, S., et al. (2008) A Naturally Occurring Proline-to-Alanine Amino Acid Change in fks1p in Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis Accounts for Reduced Echinocand in Susceptibility. Antimicrob Aqents Chemother, 52, 2305-2312. https://doi.org/10.1128/AAC.00262-08
Dominique, S. (2016) Emerging Threats in Antifungal-Resistant Fungal Pathogens. Frontiers in Medicine, 3, 11.
Taff, H.T., Mitchell, K.F., Edward, J.A., et al. (2013) Mechanisms of Candida Biofilm Drug Resistance. Future Microbiology, 8, 1325-1327. https://doi.org/10.2217/fmb.13.101
Ramage, G., Robertson, S.N. and Williams, C. (2014) Strength in Numbers: Antifungal Strategies against Fungal Biofilms. International Journal of Antimicrobial Agents, 43, 114-120. https://doi.org/10.1016/j.ijantimicag.2013.10.023
Finkel, J.S. and Mitchell, A.P. (2011) Genetic Control of Candida albicans Biofilm Development. Nature Reviews Microbiology, 9, 109-118. https://doi.org/10.1038/nrmicro2475
Flemming, H.C. and Wingender, J. (2010) The Biofilm Matrix. Nature Reviews Microbiology, 8, 623-633. https://doi.org/10.1038/nrmicro2415
Chandra, J. and Mukherjee, P.K. (2015) Candida Biofilms: Development, Architecture, and Resistance. Microbiology Spectrum, 3. https://doi.org/10.1128/microbiolspec.MB-0020-2015
Ramage, G., Bachmann, S., Patterson, T.F., et al. (2002) Investigation of Multidrug Efflux Pumps in Relation to Fluconazole Resistance in Candida albicans Biofilms. Journal of Antimicrobial Chemotherapy, 49, 973-980. https://doi.org/10.1093/jac/dkf049
Robbins, N., Uppuluri, P., Nett, J., et al. (2011) Hsp90 Governs Dispersion and Drug Resistance of Fungal Biofilms. PLOS Pathogens, 7, e1002257. https://doi.org/10.1371/journal.ppat.1002257
Zhao, J. (2016) Update on the Fungal Biofilm Drug Resistance and Its Alternative Treatment. Journal of Biosciences & Medicines, 4, 37-47.
Martins, M., Uppuluri, P., Thomas, D.P., et al. (2010) Presence of Extracellular DNA in the Candida albicans Biofilm Matrix and Its Contribution to Biofilms. Mycopathologia, 169, 323-331. https://doi.org/10.1007/s11046-009-9264-y
Lewis, K. (2001) Riddle of Biofilm Resistance. Antimicrobial Agents & Chemotherapy, 45, 999-1007. https://doi.org/10.1128/AAC.45.4.999-1007.2001
Whaley, S.G., Berkow, E.L., Rybak, J.M., et al. (2016) Azole Antifungal Resistance in Candida albicans and Emerging Non-Albicans Candida Species. Frontiers in Microbiology, 7, 2173.
Anderson, T.M., Clay, M.C., Cioffi, A.G., et al. (2014) Amphotericin Forms an Extramembranous and FungicidalSterol Sponge. Nature Chemical Biology, 10(5, 400-406. https://doi.org/10.1038/nchembio.1496
Liu, J.Y., Shi, C., Wang, Y., et al. (2015) Mechanisms of Azole Resistance in Candida albicans Clinical Isolates from Shanghai, China. Research in Microbiology, 166, 153-161. https://doi.org/10.1016/j.resmic.2015.02.009
Martel, C.M., Parker, J.E., Bader, O., et al. (2010) Identification and Characterization of four Azole-Resistant erg3 Mutants of Candida albicans. Antimicrobial Agents & Chemotherapy, 54, 4527-4533. https://doi.org/10.1128/AAC.00348-10
Hope, W. W., Tabernero, L., Denning, D.W., et al. (2004) Molecular Mechanisms of Primary Resistance to Flucytosine in Candida albicans. Antimicrobial Agents & Chemotherapy, 48, 4377-4386. https://doi.org/10.1128/AAC.48.11.4377-4386.2004
Edlind, T.D. and Katiyar, S.K. (2010) Mutational Analysis of Flucytosine Resistance in Candida glabrata. Antimicrobial Agents & Chemotherapy, 54, 4733-4738. https://doi.org/10.1128/AAC.00605-10
Ostroskyzeichner, L., Casadevall, A., Galgiani, J.N., et al. (2010) An Insight into the Antifungal Pipeline: Selected New Molecules and Beyond. Nature Reviews. Drug Discovery, 9, 719-727. https://doi.org/10.1038/nrd3074
Cowen, L.E. and Steinbach, W.J. (2008) Stress, Durgs, and Evolution: The Role of Cellular Signaling in Fungal Drug Resistance. Eukaryotic Cell, 7, 747-764. https://doi.org/10.1128/EC.00041-08
Ran, Y., Chen, S., Dai, Y., et al. (2015) Successful Treatment of Oral Itraconazole for Infantile Hemangiomas: A Case Series. Journal of Dermatology, 42, 202-206. https://doi.org/10.1111/1346-8138.12724
Liu, R., Li, J., Zhang, T., et al. (2014) Itraconazole Suppresses the Growth of Glioblastoma through Induction of Autophagy: Involvement of Abnormal Cholesterol Trafficking. Autophagy, 10, 1241-1255. https://doi.org/10.4161/auto.28912
Denning, D.W. (2003) Echinocandin Antifungal Drugs. The Lancet, 362, 1142-1151. https://doi.org/10.1016/S0140-6736(03)14472-8
Biswas, C., Chen, S.C., Halliday, C., et al. (2017) Identification of Genetic Markers of Resistance to Ehinocandins, Azoles and 5-Fluorocytosine in Candida glabrata by Next-Generation Sequencing: A Feasibility Study. Clinic Microbiology and Infection, 23, 676.e7-676.e10. https://doi.org/10.1016/j.cmi.2017.03.014
Wu, S., Wang, Y., Liu, N., et al. (2017) Tackling Fungal Resistance by Biofilm Inhibitors. Journal of Medicinal Chemistry, 60, 2193-2211. https://doi.org/10.1021/acs.jmedchem.6b01203
Santos, E. and Levitz, S.M. (2014) Fungal Vaccines and Im-munotherapeutics. Cold Spring Harbor Perspectives in Medicine, 4, a019711. https://doi.org/10.1101/cshperspect.a019711
Chen, X., Ren, B., Chen, M., et al. (2014) ASDCD: Antifungal Synergistic Drug Combination Database. PLoS ONE, 9, e86499. https://doi.org/10.1371/journal.pone.0086499
Kathwatel, G.H. and Karuppayi, S.M. (2016) Tramadol, an Opioid Receptor Agonist: An Inhibitor of Growth, Morphogenesis, and Biofilm Formation in the Human Pathogen, Candida albicans. Assay & Drug Development Technologies, 14, 567-572. https://doi.org/10.1089/adt.2016.760
Li, D.D., Zhao, L.X., Mylonakis, E., et al. (2014) In Vitro and in Vivo Activities of Pterostilbene against Candida albicans Biofilms. Antimicrobial Agents & Chemotherapy, 58, 234423-234455. https://doi.org/10.1128/AAC.01583-13
Lockhart, S.R., Etienne, K.A., Vallabhaneni, S., et al. (2017) Simultaneous Emergence of Multidrug-Resistant Candida auris on 3 Continents Confirmed by Whole-Genome Sequencing and Epidemiological Analyses. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 64, 134-140. https://doi.org/10.1093/cid/ciw691
Parenterocha, J.A., Bailão, A.M., Amaral, C.A., et al. (2017) Antifungal Resistance, Metabolic Routes as Drug Targets, and New Antifungal Agents: An Overview about Endemic Dimorphic Fungi. Mediators of Inflammation, 2017, Article ID: 9870679.