采用矩阵分裂的方法对MB-矩阵的子直和进行了研究,给出了MB-矩阵子直和仍为MB-矩阵的一些充分条件,最后用数值例子对所给结论进行了验证。 Several sufficient conditions ensuring that the subdirect sum of MB-matrices is in the class of MB-matrices are given by using the matrix splitting. And the conclusion is illustrated by a numerical example.
MB-矩阵,子直和,Z-矩阵,M-矩阵,矩阵分裂, MB-Matrix
Subdirect Sum
Z-Matrix
M-Matrix
Matrix Splitting
MB-矩阵的子直和
骆毅,李耀堂. MB-矩阵的子直和Subdirect Sums of MB-Matrices[J]. 应用数学进展, 2017, 06(03): 338-347. http://dx.doi.org/10.12677/AAM.2017.63039
参考文献 (References)References
Fallat, S.M. and Johnson, C.R. (1999) Sub-Direct Sum Sand Positivity Classes of Matrices. Linear Algebra and Its Applications, 288, 149-173.
Bru, R., Pedroche, F. and Szyld, D.B. (2005) Subdirect Sums of Nonsingular M-Matrices and of Their Inverse. Electronic Journal of Linear Algebra, 13, 162-174. https://doi.org/10.13001/1081-3810.1159
Bru, R., Pedroche, F., Szyld, D.B. (2005) Additive Schwarz Iterations for Markov Chains. The SIAM Journal on Matrix Analysis and Applications, 27, 445-458. https://doi.org/10.1137/040616541
Frommer, A. and Szyld, D.B. (1999) Weighted Max Norms, Splittings, and Overlapping Additive Schwarz Iterations. Numerische Mathematik, 83, 259-278. https://doi.org/10.1007/s002110050449
Li, H.-B., Huang, T.-Z. and Li, H. (2007) On Some Subclasses of P-Matrices. Linear Algebra and Its Applications, 14, 391-405. https://doi.org/10.1002/nla.524
Li, C.Q., Liu, Q.L., Gao, L. and Li, Y.T. (2016) Subdirect Sums of Nekrasov Matrices. Linear and Multilinear Algebra, 64, 208-218. https://doi.org/10.1080/03081087.2015.1032198
Bru, R., Pedroche, F. and Szyld, D.B. (2006) Subdirect Sums of S-Strictly Diagonally Dominant Matrices. Electronic Journal of Linear Algebra, 15, 201-209. https://doi.org/10.13001/1081-3810.1230
Berman, A. and Plemmons, R.-J. (1994) Nonnegative Matrices in the Mathematical Sciences. SIAM Publisher, Philadelphia.
徐仲, 陆全, 张凯院, 安小红. H-矩阵类的理论及应用[M]. 北京: 科学出版社, 2013.
王静. P-矩阵子类的一些推广及应用[J]. 广西科学院学报. 2009, 25(2): 83- 85, 91.
陈公宁. 矩阵理论与应用[M]. 北京: 科学出版社, 2007.