在经典的经济资产定价模型理论中,假定的是基本面分析者预期信念中价格在一定时间会偏离长期基准价格但最终会向基准价格回归,而仅考虑方差是一个常数,在本文中基本面交易者的价格波动不仅受到当前价格自身的影响,还会受到当前价格和基准价格偏差的影响,而图表分析者相信未来价格的预测来自于当前价格和历史价格的学习过程,这个历史价格过程是一个有限的几何衰减过程,选择的历史信息记忆参数为一个常数,因此,在本文中,我们预期信念中记忆参数选择为一个一般函数,由此构建了一个预期信念中有一般函数参数的资产定价模型。 In the classic asset pricing model theory, it is assumed that fundamental analysts’ expected belief prices will deviate from the long-term benchmark price but will eventually return to the benchmark price in a certain period of time, and considering only the variance is a constant, in this paper the fundamental traders’ price volatility is not only affected by the current price of its influence will from the current price but also the benchmark price of the deviation, and the chart analysts believe the learning process of the future price forecast from the current price and the price of the price history, the historical process is a geometric decay process, historical information memory parameters as a constant, therefore, in this paper, we expect the memory parameter selection as a general belief function, which constructs the asset pricing model with general function parameters in the expected beliefs.
函数参数,局部渐近稳定,历史信息记忆参数,统计检验, Function Parameter
Local Asymptotic Stability
Historical Information Memory Parameter
Statistical Test
预期信念中含一般函数参数的资本资产定价模型研究
这一部分我们将对比分析本文模型与Chiarella and He (2015) [
20
] 所建的模型(分别用PM和BM表示)得到的仿真数据,以及真实市场所呈现的统计特征市场,本文模型选取
,当
和
取零时候,所得到的模型和文献 [
20
] 一样。
原文模型Chiarella and He(2015) [
20
] 参数的选取如表1、表2所示,本文模型选取a表示对参数平方项的反应强度,参数的选取的初始值是在平衡点的全局渐近稳定区域内。
为了进行数据对比,我们选取两只股票数据,上证指数(999999)日收盘价作为数据集,样本有5356个观测值,周期是从1993年7月22日到2017年3月13日,深证综指(399106)日收盘价作为数据集,样本有5051个观测值,周期是从1996年5月10日到2017年3月17日,数据取自齐鲁证券通达信,通过选取数据来比较本文模型与Chiarella and He (2015) [
23
] 中模型哪个能更好的反映真实市场的特点。
卜燕平,师恪. 预期信念中含一般函数参数的资本资产定价模型研究A Pricing Model Research with the General Function Parameters in Expected Belief[J]. 应用数学进展, 2017, 06(03): 327-337. http://dx.doi.org/10.12677/AAM.2017.63038
参考文献 (References)References
Zeeman, E.C. (1974) The Unstable Behavior of Stock Exchange. Journal of Mathematical Economics, 1, 39-49.
Haltiwanger, J. and Waldmann, M. (1985) Rational Expectations and the Limits of Rationality: An Analysis of Heterogeneity. American Economic Review, 75, 326-340.
Frankel, J.A. and Froot, K.A. (1988) Chartists Fundamentalists and the Demand for Dollars. Greek Economic Review, 10, 49-102.
DeLong, J.B., Shleifer, A., Summers, L.H. and Waldmann, R.J. (1990) Noise Trader Risk in Financial Markets. Journal of Political Economy, 98, 703-738. https://doi.org/10.1086/261703
Dacorogna, M.M., Muller, U.A., Jost, C., Pictet, O.V., Olsen, R.B. and Ward, J.R. (1995) Heterogeneous Real-Time Trading Strategies in the Foreign Exchange Market. European Journal of Finance, 1, 383-403. https://doi.org/10.1080/13518479500000026
Brock, W. and Hommes, C.H. (1997) A Rational Route to Randomness. Econometrica, 65, 1059-1095. https://doi.org/10.2307/2171879
Brock, W. and Hommes, C.H. (1998) Heterogeneous Beliefs and Routes to Chaos in a Simple Asset Pricing Model. Journal of Economic Dynamic & Control, 22, 1235-1274.
Hommes, C.H. (2002) Modeling the Stylized Facts in Finance through Simple Nonlinear Adaptive Systems. Proceedings of the National Academy of Sciences of the United States of America, 99, 7221-7228. https://doi.org/10.1073/pnas.082080399
Westerhoff, F. (2004) Multiasset Market Dynamics. Macroeconomic Dynamics, 8, 591-616.
Chiarella, C., Dieci, R. and Gardini, L. (2005) The Dynamic Interaction of Speculation and Diversification. Applied Mathematical Finance, 12, 17-52. https://doi.org/10.1080/1350486042000260072
Westerhoff, F. and Dieci, R. (2006) The Effectiveness of Keynes-Tobin Transaction Taxes When Heterogeneous Agebts Can Trade in Different Markets: A Behavioral Finance Approach. Journal of Economic Dynamic & Control, 30, 293-322.
Pagan, A. (1996) The Econometrics of Financial Markets. Journal of Empirical Finance, 3, 15-102.
Lux, T. (2008) Financial Power Laws: Empirical Evidence, Models and Mechanisms. In: Cioffi-Revilla, C., Ed., Power Laws in the Social Sciences: Discovering Complexity and Non-Equilibrium in the Social Universe, Cambridge University Press, Cambridge.
He, X. and Li, Y. (2007) Power-Law Behaviour, Heterogeneity, and Trend Chasing. Journal of Economic Dynamics and Control, 31, 3396-3426.
He, X. and Li, Y. (2008) Heterogeneity, Convergence, and Autocorrelations. Quantitative Finance, 8, 59-79.
Hens, T. and Schenk-Hoppe, K., Eds. (2009) Handbook of Financial Markets: Dynamics and Evolution. Elsevier, North-Holland, 277-344.
Chen, S.-H., Chang, C.-L. and Du, Y.-R. (2012) Agent-Based Economic Models and Econometrics. The Knowledge Engineering Review, 27, 187-219. https://doi.org/10.1017/S0269888912000136
Chiarella, C. and He, X.Z. (2014) Heterogeneous Expectations in Asset Pricing: Empirical Evidence from the S&P500. Journal of Economic Behavior & Organization, 105, 1-16.
李娜. 预期信念中含一般性函数的资产定价模型的研究[D]: [硕士学位论文]. 乌鲁木齐: 新疆大学, 2015.
He, X.-Z. and Li, Y. (2015) Testing of a Market Fraction Model and Power-Law Behaviour in the DAX 30. Journal of Empirical Finance, 31, 1-17.
刘慧选. 预期信念中含低阶可微一般函数的资产定价模型及实证分析[D]: [硕士学位论文]. 乌鲁木齐: 新疆大学, 2016.
周义仓, 曹慧, 肖燕妮. 差分方程及其应用[M]. 北京: 科学出版社, 2014: 134.
贺小明, 彭名书. 常微分方程与动力系统概论[M]. 北京: 北京理工大学出版社, 2012.